Test length doesn't matter, it's how you use the items that counts: An intelligent procedure for item selection in Item Response Theory

Ottavia M. Epifiania^{1,2}, Pasquale Anselmi³, Egidio Robusto³ ¹ Psychology and Cognitive Science Department, University of Trento, Italy ² Psicostat, University of Padova, Italy ³ Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Italy

Convegno ASA 2024, Contributed session: Developing, administering and refining measurement instruments in Social Sciences

200

Typical procedure: Manually inspecting the item characteristics to recreate the desired characteristics of a test

Automated (new) procedure: A priori definition of latent trait levels of interest on which the STF should be focusing the most

Typical procedure: Manually inspecting the item characteristics to recreate the desired characteristics of a test

Issue

Not an automated procedure \rightarrow depends on the subjectivity of the researcher

Automated (new) procedure: A priori definition of latent trait levels of interest on which the STF should be focusing the most

Issue

Punctual definition of the specific latent trait levels of interest influences the number of selected items

Typical procedure: Manually inspecting the item characteristics to recreate the desired characteristics of a test

Issue

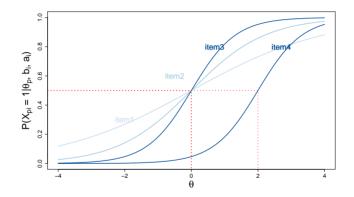
Not an automated procedure \rightarrow depends on the subjectivity of the researcher

Automated (new) procedure: A priori definition of latent trait levels of interest on which the STF should be focusing the most

Issue

Punctual definition of the specific latent trait levels of interest influences the number of selected items

AIM

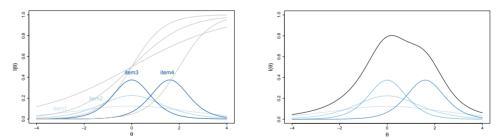

New automated procedure for item selection in IRT that only requires the definition of the desired characteristics of a test

ILA

LItem Response Theory and Information Functions

 ${}_{2}$ -Parameter Logistic Model

$$P(x_{pi} = 1 | \theta_p, b_i, a_i) = \frac{\exp[a_i(\theta_p - b_i)]}{1 + \exp[a_i(\theta_p - b_i)]}$$


 θ_p : Latent trait level of person p

- b_i : Location of item i on θ
- a_i : Discrimination ability of item i

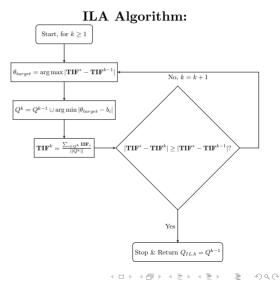
ILA Litem Response Theory and Information Functions Litem and Test Information Functions

Item Information Function (IIF): $I_i(\theta) = a_i^2 P_i(\theta, b_i, a_i) [1 - P_i(\theta, b_i, a_i)]$

Test Information Function (TIF): $I(\theta) = \sum_{i=1}^{N} I_i(\theta)$

・ロト ・ 回 ・ ミ ・ ・ 回 ・ うへぐ

ILA └─Item Selection Procedures └─Item Locating Algorithm - ILA


Set up:

 $N{:}$ number of items included in the item bank

 Q^k : Set of item indexes selected for inclusion in the STF up to iteration $k \ (Q^0 = \emptyset)$

 \mathbf{TIF}^* : TIF target

 $\mathbf{TIF}^0 = (0, 0, \dots, 0)$

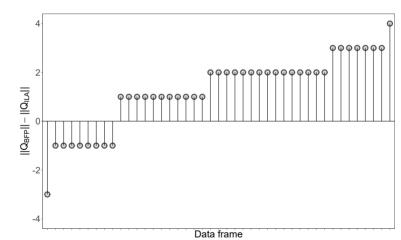
ILA Litem Selection Procedures Brute Force Procedure – BFP

For each $Q_m \subset Q$ with $Q_m \neq \emptyset$, calculate:

$$\mathbf{TIF}^{Q_m} = \frac{\sum_{i \in Q_m} IIF_i}{||Q_m||}$$

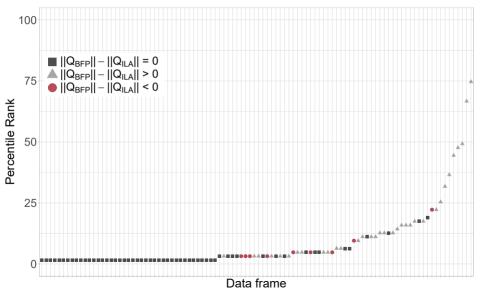
$$\mathbf{\overline{\Delta}_{TIF}^{Q_m}} = mean(|\mathbf{TIF}^* - \mathbf{TIF}^{Q_m}|)$$

 $Q_{BFP} = \arg\min_{\emptyset \neq Q_m \subset Q} \Delta_{\mathbf{TIF}^{Q_m}}$

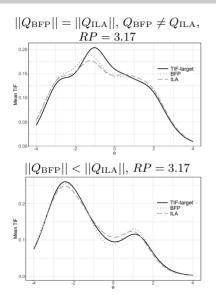

100 data frames:

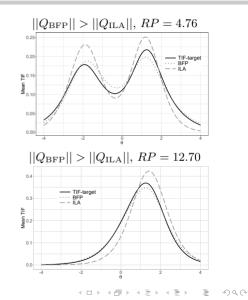
- ① Generate an item bank B of N = 6 items:
 - Difficulty parameters: $\mathcal{U}(-3,3)$
 - Discrimination parameters: $\mathcal{U}(.90, 2.0)$
- 2 Random item selections of lengths l from B $(M_l = 3.34 \pm 1.13) +$ modification parameters $\mathcal{U}(-0.20, 0.20) \rightarrow \mathbf{TIF}^*$
- **3** Considering \mathbf{TIF}^* at Step 2 and item parameters at Step 1:
 - $\bullet \ {\rm ILA} \to \textit{Forwardly searches}$
 - $\bullet~\mathrm{BFP} \to Systematically~tests$

 ${\bf Comparison:}$


- $||Q_{\rm BFP}|| ||Q_{\rm ILA}||$
- $\bullet~{\rm Percentile~rank}~({\rm RP})$ of the distance ${\bf TIF}_{\rm BFP}-{\bf TIF}_{\rm ILA}$

ILA \sqsubseteq Simulation Study $\sqsubseteq ||Q_{BFP}||$ vs. $||Q_{ILA}||$




$||Q_{\rm BFP}|| - ||Q_{\rm ILA}|| = 0$ in 57% of cases

ILA └─Simulation Study └─TIF comparison

Pros of ILA

- It selects items that are able to recreate the desired characteristics of a test (usually)
- It is computationally "Light"

Cons of ILA

- It grounds its selection on a single θ_{target} at a time \rightarrow it might select items minimizing the distance on that target but that are not very useful for the test
- $\, \circ \,$ It only forwardly searches an item \rightarrow once it is in, it can't get out
- It does not account for the discrimination parameters of the items