
An intRoduction to R

Ottavia M. Epifania
Erasmus+ QHelp seminar, Padova, 10th July 2022

Univerisity of Padova (IT)

1

Table of contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

2

Course material

NB: This material is based on the lessons by Prof. Florian Wickelmaier

Let’s all set:

set.seed(999)

3

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

4

• R is an open source software for statistical computing, graphics,
and so much more

• RStudio is the perfect IDE for R → allows for a better, easier use
of R

• R runs on Windows, MacOs, Unix

5

CalculatoR

3 + 2 # plus
3 - 2 # minus
3 * 2 # times
3 / 2 # divide
sqrt(4) # square root
log(3) # natural logarithm
exp(3) # exponential

Use brackets as you would do in a normal equation:

(3 * 2)/ sqrt(25 + 4) # Look at me!

R ignores everything after # (it’s a comment)

6

Assign

The results of the operations can be “stored” into objects with specific
names defined by the users.

To assign a value to an object, there are two operators:

1. x = exp(2ˆ2)

2. X <- log(2ˆ2)

The elements on the right are assigned to the object on the left

Careful! R is case sensitive: x and X are two different objects!!!

7

Variable names

Valid variable names are letters, numbers, dots, underscores (e.g.,
variable_name)

Variable names cannot start with numbers

Again, R is case sensitive

8

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

9

R community is the best feature of R

Just copy & paste any error message or warning in Google or ask
Google “how to [something] in r”

Ask R to help you! Type ? in your console followed by the name of the
function:

?mean()

Will show you the help page of the mean() function

10

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

11

Organize your files

R projects are the best way to organize your files (and your workflow)

They allow you to have all your files in a folder organized in sub folders

You don’t have to worry about the wording directories because it’s all
there!

By creating a new project, you can also initialize a Shiny app

12

Create a new R project

File → New project and choose what is best for you (unless you have
already initialized a directory for your project, select a new directory):

• R project “basic”

• R package

• Shiny project

and so much more

13

Take out the trash

The R environment should be always tidy

If it feels like you’re losing it, just clean it up:

ls() # list objects in the envrinoment
rm(A) # remove object A from the environment
rm(list=ls()) # remove everything from the environment

14

Save the environment

It might be useful to save all the computations you have done:

save.image("my-computations.RData")

Then you can upload the environment back:

load("my-Computations.RData")

15

When to save the environment

The computations are slow and you need them to be always and easily
accessible

The best practice is to save the script and document it in an
RMarkdown file → Reproducibilty!

16

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

17

If you choose not to use the R projects (what a bad, bad, bad idea), you
need to know your directories:

getwd() # the working directory in which you are right now

dir() # list of what's inside the current working directory

Change your working directory:

setwd("C:/Users/huawei/OneDrive/Documenti/GitHub/RcouRse")

18

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

19

Functions and arguments (pt. I)

Almost everything in R is done with functions, consisting of:

• a name: mean

• a pair of brackets: ()

• some arguments: na.rm = TRUE

mean(1:5, trim = 0, na.rm = TRUE)

[1] 3

Arguments may be set to default values; what they are is documented
in ?mean()

20

Functions and arguments (pt. II)

Arguments can be passed

• without name (in the defined order)

• with name (in arbitrary order) → keyword matching

mean(x, trim = 0.3, na.rm = TRUE)

No arguments? No problems, just brackets:

ls(), dir(), getwd()

Want to see the code of a function? Just type its name in the console
without brackets:

chisq.test

21

Vectors

Vectors are created by combining together different objects

Vectors are created by using the c() function.

All elements inside the c() function must be separated by a comma

Different types of objects → types of vectors:

• int: numeric integers
• num: numbers
• logi: logical
• chr: characters
• factor: factor with different levels

22

int and num

int: refers to integer: -3, -2, -1, 0, 1, 2, 3

months = c(5, 6, 8, 10, 12, 16)

[1] 5 6 8 10 12 16

num: refers to all numbers from −∞ to ∞: -0.2817402, -1.3125596,
0.795184, 0.2700705, -0.2773064, -0.5660237

weight = seq(3, 11, by = 1.5)

[1] 3.0 4.5 6.0 7.5 9.0 10.5

23

logi

Logical values can be TRUE (T) or FALSE (F)

v_logi = c(TRUE, TRUE, FALSE, FALSE, TRUE)

[1] TRUE TRUE FALSE FALSE TRUE

logical vectors are often obtained from a comparison:

months > 12

[1] FALSE FALSE FALSE FALSE FALSE TRUE

24

chr and factor

chr: characters: a, b, c, D, E, F

v_chr = c(letters[1:3], LETTERS[4:6])

[1] "a" "b" "c" "D" "E" "F"

factor: use numbers or characters to identify the variable levels

ses = factor(c(rep(c("low", "medium", "high"), each = 2)))

[1] low low medium medium high high
Levels: high low medium

Change order of the levels:

ses1 = factor(ses, levels = c("medium", "high", "low"))

[1] low low medium medium high high
Levels: medium high low

25

Create vectors

Concatenate elements with c(): vec = c(1, 2, 3, 4, 5)

Sequences:

-5:5 # vector of 11 numbers from -5 to 5

[1] -5 -4 -3 -2 -1 0 1 2 3 4 5

seq(-2.5, 2.5, by = 0.5) # sequence in steps of 0.5

[1] -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Repeating elements:

rep(1:3, 4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

26

Create vectors II

rep(c("condA", "condB"), each = 3)

[1] "condA" "condA" "condA" "condB" "condB" "condB"

rep(c("on", "off"), c(3, 2))

[1] "on" "on" "on" "off" "off"

paste0("item", 1:4)

[1] "item1" "item2" "item3" "item4"

27

Don’t mix them up unless you truly want to

int + num → num

int/num + logi → int/num

int/num + factor → int/num

int/num + chr → chr

chr + logi → chr

28

Vectors and operations

Vectors can be summed/subtracted/divided and multiplied with one
another

a = c(1:8)
a

[1] 1 2 3 4 5 6 7 8

b = c(4:1)
b

[1] 4 3 2 1

a - b

[1] -3 -1 1 3 1 3 5 7

If the vectors do not have the same length, you get a warning
29

Vectors and operations PT. II

The function is applied to each value of the vector:

sqrt(a)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427

The same operation can be applied to each element of the vector:

(a - mean(a))ˆ2 # squared deviation

[1] 12.25 6.25 2.25 0.25 0.25 2.25 6.25 12.25

30

Matrices and arrays

Create a 3× 4 matrix:

A = matrix(1:12, nrow=3, ncol = 4, byrow = TRUE)

Label and transpose:

rownames(A) = c(paste("a", 1:3)) # colnames()
t(A) # transpose matrix

a 1 a 2 a 3
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

31

Matrices and arrays

Matrix can be created by concatenating columns or rows:

cbind(a1 = 1:4, a2 = 5:8, a3 = 9:12) # column bind
rbind(a1 = 1:4, a2 = 5.8, a3 = 9:12) # row bind

32

Matrices and arrays

array(data, c(nrow, ncol, ntab))

my_array = array(1:30, c(2, 5, 3)) # 2 x 5 x 3 array

, , 1

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

, , 2

[,1] [,2] [,3] [,4] [,5]
[1,] 11 13 15 17 19
[2,] 12 14 16 18 20

, , 3

.... 33

Work with vectors, matrices, arrays

Index elements in vectors: vector_name[position]

weight[2] # second element in vector weight
weight[6] = 15.2 # replace sixth element of weight
weight[seq(1, 6, by = 2)] # elements 1, 3, 5
weight[2:6] # elements 2 to 6
weight[-2] # without element 2

Logic applies as well:

weight[weight > 7] # values greater than 7
weight[weight >= 4.5 & weight < 8] # values between 4.5

and 8

34

String processing

substr(x, start, stop) # extract substring
grep(pattern, x) # match pattern (poistion)
grep(pattern, x) # match pattern (TRUE/FALSE)
gsub(pattern, replacement, x) # replace pattern

pattern = regular expression (?regex):

foo # match pattern foo
.* # match arbitrary character zero or more times
[a-z0-9] # match alphanumeric character

35

Example

Match string that starts with a or b and replace it by its starting letter.

gsub("(ˆ[ab]).*", "\\1", c("aaa", "bbc", "cba"))

[1] "a" "b" "cba"

36

Work with vectors, matrices, arrays II

Index elements in matrices: matrix_name[row, column]

A[2, 3] # cell in row 2 column 3

A[2,] # second row

A[, 3] # third column

37

Work with vectors, matrices, arrays III

Index elements in arrays array_name[row, col, tab]

my_array[2, 1, 3] # cell in 2nd row 1st col of 3rd tab

my_array[, , 3] # 3rd tab

my_array[1, ,2] # 1st row in tab 2

38

Lists

Can store different objects (e.g., vectors, data frames, other lists):

my_list = list(w = weight, m = months, s = ses1, a = A)

The components of the list can be indexed with $ or [[]] and the
name (or position) of the component:

Extract months:

my_list[["m"]] # my_list$m

[1] 5 6 8 10 12 16

Extract weight:

my_list[[1]] # my_list$weight or my_list[["w"]]

[1] 3.0 4.5 6.0 7.5 9.0 10.5

39

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

40

Data frames are lists that consist of vectors and factors of equal length.
The rows in a data frame refer to one unit:

id = paste0("sbj", 1:6)
babies = data.frame(id, months, weight)

babies

id months weight
1 sbj1 5 3.0
2 sbj2 6 4.5
3 sbj3 8 6.0
4 sbj4 10 7.5
5 sbj5 12 9.0
6 sbj6 16 10.5

41

Working with data frames

Index elements in a data frame:

babies$months # column months of babies

babies$months[2] # second element of column months

babies[, "id"] # column id

babies[2,] # second row of babies (obs on baby 2)

Logic applies:

babies[babies$weight > 7,] # all obs above 7 kg
babies[babies$id %in% c("sbj1", "sbj6"),] # obs of sbj1

and sbj7

42

Working with data frames II

dim(babies) # show the dimensions of the data frame

[1] 6 3

names(babies) # variable names (= colnames(babies))

[1] "id" "months" "weight"

View(babies) # open data viewer

plot(babies) # pariwise plot

You can use these commands also on other R objects

43

Working with data frames III

str(babies) # show details on babies

'data.frame': 6 obs. of 3 variables:
$ id : chr "sbj1" "sbj2" "sbj3" "sbj4" ...
$ months: num 5 6 8 10 12 16
$ weight: num 3 4.5 6 7.5 9 10.5

summary(babies) # descriptive statistics

id months weight
Length:6 Min. : 5.0 Min. : 3.000
Class :character 1st Qu.: 6.5 1st Qu.: 4.875
Mode :character Median : 9.0 Median : 6.750

Mean : 9.5 Mean : 6.750
3rd Qu.:11.5 3rd Qu.: 8.625
Max. :16.0 Max. :10.500

44

Sorting

order():

babies[order(babies$weight),] # sort by increasing weight

id months weight
1 sbj1 5 3.0
2 sbj2 6 4.5
3 sbj3 8 6.0
4 sbj4 10 7.5
5 sbj5 12 9.0
6 sbj6 16 10.5

babies[order(babies$weight, # sort by decreasing weight
decreasing = T),]

Multiple arguments in order:

babies[order(babies$weight, babies$months, decreasing = TRUE),]45

Aggregating

Aggregate a response variable according to grouping variable(s) (e.g.,
averaging per experimental conditions):

Single response variable, single grouping variable
aggregate(y ~ x, data = data, FUN, ...)

Multiple response variables, multiple grouping variables
aggregate(cbind(y1, y2) ~ x1 + x2, data = data, FUN, ...)

46

Aggregating: Example

ToothGrowth # Vitamin C and tooth growth (Guinea Pigs)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5
....

aggregate(len ~ supp + dose, data = ToothGrowth, mean)

supp dose len
1 OJ 0.5 13.23
2 VC 0.5 7.98
3 OJ 1.0 22.70
4 VC 1.0 16.77
5 OJ 2.0 26.06
6 VC 2.0 26.14

47

Reshaping: Long to wide

Data can be organized in wide format (i.e., one line for each statistical
unit) or in long format (i.e., one line for each observation).

Indometh # Long format

Subject time conc
1 1 0.25 1.50
2 1 0.50 0.94
3 1 0.75 0.78
4 1 1.00 0.48
5 1 1.25 0.37
6 1 2.00 0.19
....

48

Long to wide

From long to wide
df.w <- reshape(Indometh, v.names = "conc", timevar = "time",

idvar = "Subject", direction = "wide")

Subject conc.0.25 conc.0.5 conc.0.75 conc.1 conc.1.25 conc.2 conc.3 conc.4
1 1 1.50 0.94 0.78 0.48 0.37 0.19 0.12 0.11
12 2 2.03 1.63 0.71 0.70 0.64 0.36 0.32 0.20
23 3 2.72 1.49 1.16 0.80 0.80 0.39 0.22 0.12
34 4 1.85 1.39 1.02 0.89 0.59 0.40 0.16 0.11
45 5 2.05 1.04 0.81 0.39 0.30 0.23 0.13 0.11
56 6 2.31 1.44 1.03 0.84 0.64 0.42 0.24 0.17

conc.5 conc.6 conc.8
....

49

Reshaping: Wide to long

From wide to long
df.l <- reshape(df.w, varying = list(2:12), v.names = "conc",

idvar = "Subject", direction = "long", times = c(0.25, 0.5,
0.75, 1, 1.25, 2, 3, 4, 5, 6, 8))

Subject time conc
1.0.25 1 0.25 1.50
2.0.25 2 0.25 2.03
3.0.25 3 0.25 2.72
....

df.l[order(df.l$Subject),] # reorder by subject

Subject time conc
1.0.25 1 0.25 1.50
1.0.5 1 0.50 0.94
1.0.75 1 0.75 0.78
.... 50

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

51

Reading tabular txt files:

ASCII text files in tabular or spread sheet form (one line per
observation, one column per variable) are read using read.table()

data = read.table("C:/RcouRse/file.txt", header = TRUE)

data is a data frame where the original numerical variables are
converted in numeric vectors and character variables are converted in
factors (not always).

Arguments:

• header: variable names in the first line? TRUE/FALSE
• sep: which separator between the columns (e.g., comma, \t)
• dec: 1.2 or 1,2?

52

Reading other files

data = read.csv("C:/RcouRse/file.csv",
header = TRUE, sep = ";",
dec = ",")

From SPSS (file .sav):

install.packages("foreign")
library(foreign)
data = read.spss("data.sav", to.data.frame = TRUE)

53

Combine data frames

If they have the same number of columns/rows

all_data = rbind(data, data1, data2) # same columns
all_data = cbind(data, data1, data2) # same rows

If they have different rows/columns but they share at least one
characteristic (e.g., ID):

all_data = merge(data1, data2,
by = "ID")

If there are different IDs in the two datasets → added in new rows

all_data contains all columns in data1 and data2. The columns of
the IDs in data1 but not in data2 (and vice versa) will be filled with
NAs accordingly

54

Export data

Writing text (or csv) file:

write.table(data, # what you want to write
file = "mydata.txt", # its name + extension
header = TRUE, # first row with col names?
sep = "\t", # column separator
....) # other arguments

R environment (again):

save(dat, file = "exp1_data.rda") # save something specific
save(file = "the_earth.rda") # save the environment
load("the_earth.rda") # load it back

55

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

56

Be ready to make mistakes (a lot of mistakes)

Coding is hard art

Eyes on the prize, but take your time (and the necessary steps) to get
there

Remember: You’re not alone → stackoverflow (or Google in general)
is your best friend

57

ifelse()

Conditional execution:

Easy: ifelse(test, if true, if false)

ifelse(weight > 7, "big boy", "small boy")

[1] "small boy" "small boy" "small boy" "big boy" "big boy" "big boy"

Pros
- Super easy to use

- Can embed multiple ifelse() cycles

Cons
- It works fine until you have simple tests

58

if () {} else {}

If you have only one condition:

if (test_1) {
command_1

} else {
command_2

}

59

if () {} else {}

Multiple conditions:

if (test_1) {
command_1

} else if (test_2) {
command_2

} else {
command_3

}

test_1 (and test_2, if you have it) must evaluate in either TRUE or
FALSE

if(!is.na(x)) y <- xˆ2 else stop("x is missing")

60

Loops

for() and while()

Repeat a command over and over again:

Don't do this at home
x <- rnorm(10)
y <- numeric(10) # create an empty container
for(i in seq_along(x)) {
y[i] <- x[i] - mean(x)
}

The best solution would have been:

y = x - mean(x)

61

Avoiding loops

Don’t loop, apply()!

apply()

X <- matrix(rnorm(20),
nrow = 5, ncol = 4)

apply(X, 2, max) # maximum for each column

[1] 1.3254637 0.9576504 0.9013448 0.6430443

for()

y = NULL
for (i in 1:ncol(X)) {

y[i] = max(X[, i])
}

62

Avoiding loops

Don’t loop, apply()!

apply()

X <- matrix(rnorm(20),
nrow = 5, ncol = 4)

apply(X, 2, max) # maximum for each column

[1] 1.3254637 0.9576504 0.9013448 0.6430443

for()

y = NULL
for (i in 1:ncol(X)) {
y[i] = max(X[, i])

}

62

Avoiding loops

Group-wise calculations: tapply()

tapply() (t for table) may be used to do group-wise calculations on
vectors. Frequently it is employed to calculate group-wise means.

with(ToothGrowth,
tapply(len, list(supp, dose), mean))

0.5 1 2
OJ 13.23 22.70 26.06
VC 7.98 16.77 26.14

(You could have done it with aggregate())

63

Writing functions

Compute Cohen’s d:

dcohen = function(group1, group2) { # Arguments
mean_1 = mean(group1) ; mean_2 = mean(group2)
var_1 = var(group1) ; var_2 = var(group2) # body
d = (mean_1 - mean_2)/sqrt(((var_1 + var_2)/2))
return(d) # results

}

Use it:

dcohen(data$placebo, data$drug)

64

Named arguments

Take this function:

fun1 <- function(data, data.frame, graph, limit) { ... }

It can be called as:

fun1(d, df, TRUE, 20)
fun1(d, df, graph=TRUE, limit=20)
fun1(data=d, limit=20, graph=TRUE, data.frame=df)

Positional matching and keyword matching (as in built-in functions)

65

Defaults

Arguments can be given default values → the arguments can be
omitted!

fun1 <- function(data, data.frame, graph=TRUE,
limit=20) { ... }

It can be called as

ans <- fun1(d, df)

which is now equivalent to the three cases above, but:

ans <- fun1(d, df, limit=10)

which changes one of the defaults.

66

Methods and classes

The return value of a function may have a specified class →
determines how it will be treated by other functions.

For example, many classes have tailored print methods.

methods(print)

[1] print.acf*
[2] print.AES*
[3] print.all_vars*
[4] print.anova*
[5] print.any_vars*
[6] print.aov*
[7] print.aovlist*

....

67

Define a print method!

. . . as another function:

print.cohen <- function(obj){
cat("\nMy Cohen's d\n\n")
cat("Effect size: ", obj$d, "\n")
invisible(obj) # return the object

}

We have to change our dcohen function a bit:

dcohen = function(group1, group2) { # Arguments
...
dvalue = list(d = d)
class(dvalue) = "cohend"
return(dvalue) # results

}
68

Example

Compute the Cohen’s d between a test group and a control group:

set.seed(082022) # results equal for everyone
data <- data.frame(drug = rnorm(6, 10),

placebo = rnorm(6, 2))
my_d = dcohen(data$drug, data$placebo)
print.cohen(my_d)

My Cohen's d

Effect size: 6.900794

69

Debugging

Use the traceback() function:

foo <- function(x) { print(1); bar(2) }
bar <- function(x) { x + a.variable.which.does.not.exist }

Call foo() and. . .

foo() #
[1] 1
Error: object ’a.variable.which.does.not.exist’ not found

70

Use traceback():

traceback() # find out where the error occurred
2: bar(2)
1: foo()

Note: traceback() appears as default

71

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

72

• Traditional graphics
• Grid graphics & ggplot2

For both:

• High level functions → actually produce the plot
• Low level functions → make it looks better =)

73

Export graphics file

postscript() # vector graphics
pdf()

png() # bitmap graphics
tiff()
jpeg()
bmp()

Remember to run off the graphic device once you’ve saved the graph:

dev.off()

(You can do it also manually)

74

Traditional graphics I

High level functions

plot() # scatter plot, specialized plot methods
boxplot()
hist() # histogram
qqnorm() # quantile-quantile plot
barplot()
pie() # pie chart
pairs() # scatter plot matrix
persp() # 3d plot
contour() # contour plot
coplot() # conditional plot
interaction.plot()

demo(graphics) for a guided tour of base graphics!
75

Traditional graphics II

Low level functions

points() # add points
lines() # add lines
rect()
polygon()
abline() # add line with intercept a, slope b
arrows()
text() # add text in plotting region
mtext() # add text in margins region
axis() # customize axes
box() # box around plot
legend()

76

Plot layout

Each plot is composed of two regions:

• The plotting regions (contains the actual plot)
• The margins region (contain axes and labels)

A scatter plot:

x <- runif(50, 0, 2) # 50 uniform random numbers
y <- runif(50, 0, 2)
plot(x, y, main="Title",

sub="Subtitle", xlab="x-label",
ylab="y-label") # produce plotting window

Now add some text:

text(0.6, 0.6, "Text at (0.6, 0.6)")
abline(h=.6, v=.6, lty=2) # horizont. and vertic.

lines 77

Margins region

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

Title

Subtitle
x−label

y−
la

be
l

Text at (0.6, 0.6)

−1
0
1
2
3
4

−
101234

−1
0
1
2
3
4

−
1 0 1 2 3 4

Side 1

S
id

e
2

Side 3

S
id

e
4

78

Rome wasn’t built in a day and neither your graph

Display the interaction between the two factors of a two-factorial
experiment:

dat <- read.table(header=TRUE, text="
A B rt
a1 b1 825
a1 b2 792
a1 b3 840
a2 b1 997
a2 b2 902
a2 b3 786
")

Force A and B to be factor:

dat[,1:2] = lapply(dat[,1:2], as.factor)
79

First: The plot

plot(rt ~ as.numeric(B), dat, type="n", axes=FALSE,
xlim=c(.8, 3.2), ylim=c(750, 1000),
xlab="Difficulty", ylab="Mean reaction time (ms)")

Difficulty

M
ea

n
re

ac
tio

n
tim

e
(m

s)

This will not result in anything! Well, it will just produce the container of the
plot

80

Populate the content

Plot the data points separately for each level of factor A.

points(rt ~ as.numeric(B), dat[dat$A=="a1",],
type="b", pch=16)

points(rt ~ as.numeric(B), dat[dat$A=="a2",],
type="b", pch=4)

Add axes and a legend.

axis(side=1, at=1:3, expression(B[1], B[2], B[3]))
axis(side=2)
legend(2.5, 975, expression(A[1], A[2]), pch=c(16, 4),

bty="n", title="Task")

81

Final result

Difficulty

M
ea

n
re

ac
tio

n
tim

e
(m

s)

B1 B2 B3

75
0

80
0

85
0

90
0

95
0

10
00

Task

A1

A2

• Error bars may be added
using the arrows() function.

• Via par() many graphical
parameters may be set (see
?par), for example
par(mgp=c(2, .7, 0))
reduces the distance between
labels and axes

82

Graphical parameters I

adj # justification of text
bty # box type for legend
cex # size of text or data symbols (multiplier)
col # color, see colors()
las # rotation of text in margins
lty # line type (solid, dashed, dotted, ...)
lwd # line width
mpg # placement of axis ticks and tick labels
pch # data symbol type
tck # length of axis ticks
type # type of plot (points, lines, both, none)

83

Graphical parameters II

par()

mai # size of figure margins (inches)
mar # size of figure margins (lines of text)
mfrow # number of sub-figures on a page:

par(mfrow=c(1, 2)) creates two sub-figures
oma # size of outer margins (lines of text)
omi # size of outer margins (inches)
pty # aspect ratio of plot region (square, maximal)

84

ggplot2

ggplot2 (Grammar of Graphics plot, Wickman, 2016) is one of the best
packages for plotting raw data and results:

install.packages("ggplot2") ; library(ggplot2)

The code for the previous plot:

ggplot(dat, aes(x = B, y = rt, group = A)) +
geom_point(pch=dat$A, size = 5) +
geom_line(aes(linetype=A), size=1) + theme_classic() +
ylab("RT") + scale_linetype_manual("Task", values =c(3,4),

labels = c("A1", "A2")) +
scale_x_discrete(labels = c("B1", "B2", "B3")) +
theme(legend.position="top",

panel.background = element_rect(fill = "#FAFAFA",
colour = "#FAFAFA"),

plot.background = element_rect(fill = "#FAFAFA"),
legend.key = element_rect(fill = "#FAFAFA")) 85

800

850

900

950

1000

B1 B2 B3
B

R
T

Task A1 A2

86

Raw data

ggplot(rock,
aes(y=peri,x=shape, color =shape,

size = peri)) + geom_point() +
theme_bw() + theme(legend.position = "none")

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4
shape

pe
ri

87

Linear model

ggplot(rock,
aes(y=peri,x=shape, color =shape,

size = peri)) + geom_point() +
theme_bw() + theme(legend.position = "none") +
geom_smooth(method="lm")

0

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4
shape

pe
ri

88

Multi Panel

North Central West

Northeast South

0 5000 10000 15000 20000 0 5000 10000 15000 20000

4

8

12

4

8

12

Population

M
ur

de
r

Illiteracy

0.5

1.0

1.5

2.0

2.5

89

Multi panel code

states = data.frame(state.x77, state.name = state.name,
state.region = state.region)

ggplot(states,
aes(x = Population, y = Murder,

size = Illiteracy)) + geom_point() +
facet_wrap(~state.region) + theme_bw()

90

Different plots in the same panel

use grid.arrange() function from the gridExtra package:

install.packages("grideExtra") ; library(gridExtra)

murder_raw = ggplot(states, # raw data
aes(x = Illiteracy, y = Murder)) +

.....

murder_lm = ggplot(states, # lm
aes(x = Illiteracy, y = Murder)) +

.....

Combine the plots together:

grid.arrange(murder_raw, murder_lm,
nrow=1) # plots forced to be the same row

91

Combine the plots together

4

8

12

1 2
Illiteracy

M
ur

de
r

4

8

12

16

1 2
Illiteracy

M
ur

de
r

92

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

93

The stats package (built-in package in R) contains function for
statistical calculations and random number generator

see library(help=stats)

94

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

95

Nominal data:

• binom.test(): exact test of a simple null hypothesis about the
probability of success in a Bernoulli experiment

• chisq.test(): contingency table χ2 tests

Metric response variable:

• cor.test(): association between paired samples
• t.test(): one- and two-sample t tests (also for paired data)
• var.test(): F for testing the homogeneity of variances

96

What is the p-value?

p-value:
conditional probability of obtaining a test stastic that is at least
as extreme as the one observed, given that the null hyphothesis
is true

If p < α (i.e., the probability of rejecting the null hypothesis when it is
true) → the null hypothesis is rejected

Value of test statistic

D
en

si
ty

 o
f t

he
 s

am
pl

in
g

di
st

rib
ut

io
n

α 2 α 21 − α

97

Binomial test

Observations Xi must be independent

Hypotheses:

1. H0: p = p0 H1: p 6= p0

2. H0: p = p0 H1: p < p0

3. H0: p = p0 H1: p > p0

Test statistic:

T =
n∑

i=1
Xi, T ∼ B(n, p0)

In R:

binom.test(5, 10, p = 0.25)

98

χ2 test

Independence of observations

Hypothesis:

• H0: P (Xij = k) = pk for all i = 1, . . . , r and j = 1, . . . , c

• H0: P (Xij = k) 6= P (Xi′j = k) for at least one i ∈ {1, . . . , r} and
j ∈ {1, . . . , c}

Test statistic:

χ2 =
n∑

i=1

(xij − x̂ij)2

x̂ij
, χ2 ∼ χ2(r − 1)(c− 1)

In R:

tab <- xtabs(~ education + induced, infert)
chisq.test(tab) 99

Correlation test

Hypothesis:

• H0: ρXY = 0, H1: ρxy 6= 0
• H0: ρXY = 0, H1: ρxy < 0
• H0: ρXY = 0, H1: ρxy > 0

Test statistic:

T = rxy√
1− r2

xy

√
n− 2, T ∼ t(n− 2)

In R:

cor.test(~ speed + dist, cars,
alternative = "two.sided")

100

Two (indepdent) sample t test

Independent samples from normally distributions where σ2 are
unknown but homogeneous

• H0: µx1−x2 = 0, H1: µx1−x2 6= 0
• H0: µx1−x2 = 0, H1: µx1−x2 < 0
• H0: µx1−x2 = 0, H1: µx1−x2 > 0

Test statistic:

T = x̄1 − x̄2
σx̄1−ȳ2

, T ∼ t(n1 + n2 − 2)

R function:

t.test(len ~ supp, data = ToothGrowth,
var.equal = TRUE)

101

Two (depedent) sample t test

Observations on the same sample

Hypothesis:

• H0: µD = 0, H1: µD 6= 0
• H0: µD = 0, H1: µD < 0
• H0: µD = 0, H1: µD > 0

Test statistic:

T = d

σd
, T ∼ t(m− 1)

R function:

with(sleep,
t.test(extra[group == 1],

extra[group == 2], paired = TRUE)) 102

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

103

Formulae

Statistical models are represented by formulae which are extremely
close to the actual statistical notation:

in R Model

y ~ 1 + x yi = β0 + β1xi + εi

y ~ x (same but short)
y ~ 0 + x yi = β1xi + εi

y ~ x_A *
x_B

yi = β0 + β1xi + β2xj + (β1β2)xij + εij

104

Linear models

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε

In R:

lm(y ~ x1 + x2 + ... + xk, data)

105

Extractor functions I

coef() # Extract the regression coefficients
summary() # Print a comprehensive summary of the results of

the regression analysis
anova() # Compare nested models and produce an analysis
resid() # Extract the (matrix of) residuals
plot() # Produce four plots, showing residuals, fitted

values and some diagnostics
model.matrix()

Return the design matrix

106

Extractor functions II

vcov() # Return the variance-covariance matrix of the
main parameters of a fitted model object

predict() # A new data frame must be supplied having the
same variables specified with the same labels
as the original. The value is a vector or
matrix of predicted values corresponding to
the determining variable values in data frame

step() # Select a suitable model by adding or dropping
terms and preserving hierarchies. The model
with the smallest value of AIC (Akaike’s
Information Criterion) discovered in the
stepwise search is returned

107

Generalized linear models

g(µ) = β0 + β1x1 + β2x2 + . . .+ βkxk + ε

g() is the link functions that connects the mean to the linear
combination of predictors.

A GLM is composed of three elements: The response distribution, the
link function, and the linear combination of predictors

In R:

glm(y ~ x1 + x2 + ... + xk, family(link), data)

108

LM vs GLM

GLM

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
Linear combination of predictors

P

LM

−2

0

2

0 1 2
x

y

109

Families

A special link function to each response variable. In R some different
link functions are available by default:

Family name Link functions
binomial logit, probit, log, cloglog
gaussian identity, log, inverse
Gamma identity, inverse, log
inverse.gaussian 1/muˆ2, identity, inverse, log
poisson log, identity, sqrt
quasi logit, probit, cloglog, identity, inverse,

log, 1/muˆ2, sqrt

110

Table of Contents
Who aRe you?
Get help
Be tidy
Working directories
Structures in R
The king of data structure: data frames
Data input and output
Programming
Graphics
R for statistical computing
Classical hypothesis testing in R
Generalized Linear Models (GLMs)
Simulations

111

Random numbers generation

Use a random monster:

112

but its better with R

Random numbers drawn from a statistical distribution → the distribution
name (see ??Distributions for an exhaustive list of distribution) prefixed by
r (random)

rnorm(10, mean = 0, sd = 1) # draw 10 numbers from a
normal distr.

rt(10, df = 20) # draw 10 numbers from a
t distr. with 20df

Sampling (with or without replacement) from a vector:

sample(1:5, size = 10, replace = T)

[1] 5 1 1 2 5 4 4 1 2 5

Make the simulations replicable by seeding them:

set.seed(999)
rpois(4, 5) 113

Bootstrap by resampling

• Compute the sample statistics on multiple bootstrap samples Bs
drawn with replacement from the original data

• Assess the variability of the statistics via the distribution of the
bootstrap replicates (i.e., the statics computed on the bootstrap
samples)

Bootstrap confidence intervals

Percentile intervals are the 1− α confidence intervals for the sample
statistics with limits given by the quantiles of the bootstrap
distribution

114

In R

example taken from Prof. Wickelmaier
mouse <- data.frame(

grp = rep(c("trt", "ctl"), c(7, 9)),
surv = c(94, 197, 16, 38, 99, 141, 23, # trt

52, 104, 146, 10, 50, 31, 40, 27, 46) # ctl
)

mean(mouse$surv[mouse$grp == "trt"]) #

[1] 86.85714

Resampling
sam1 <- numeric(1000) # 1000 bootstrap replicates
for(i in seq_along(sam1)){
trt <- sample(mouse$surv[mouse$grp == "trt"], 7, replace=T)
sam1[i] <- mean(trt)

}

115

quantile(sam1, c(.025, .975))

2.5% 97.5%
43.14286 131.33929

Bootstrap replicate

B
oo

ts
tr

ap
 d

is
tr

ib
ut

io
n

50 100 150

0
20

40
60

80
10

0

116

Parametric bootstrap

For the likelihood ratio test:

• Fit a general (M1) and a restricted model (M0) to the original
data x. Compute the original likelihood ratio s(x) between M1

and M0

• Simulate B bootstrap samples based on the stochastic part of the
restricted model: These are observations for which H0 is true

• For each sample, fit M1 and M0 and compute the bootstrap
replicate of the likelihood ratio between them

• Assess the significance of the original likelihood ratio via the
sampling distribution of bootstrap replicates

117

Model fit to original data
lm0 <- lm(surv ~ 1, mouse) # H0: no difference between gr
lm1 <- lm(surv ~ grp, mouse) # H1: group effect
anova(lm0, lm1) # original likelihood ratio

[1] 1.257516

Parametric bootstrap
sim1 <- numeric(1000)
for(i in seq_along(sim1)){
surv0 <- simulate(lm0)$sim_1 # simulate from null model
m0 <- lm(surv0 ~ 1, mouse) # fit null model
m1 <- lm(surv0 ~ grp, mouse) # fit alternative model
sim1[i] <- anova(m0, m1)$F[2] # bootstrap likeli. ratio
}

118

The bootstrap p− value is the proportion of bootstrap replicates that
exceed the original likelihood ratio:

mean(sim1 >
anova(lm0, lm1)$F[2])

[1] 0.304

Density of sampling distribution

B
oo

ts
tr

ap
 li

ke
lih

oo
d

te
st

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

119

	Who aRe you?
	Get help
	Be tidy
	Working directories
	Structures in R
	The king of data structure: data frames
	Data input and output
	Programming
	Graphics
	R for statistical computing
	Classical hypothesis testing in R
	Generalized Linear Models (GLMs)
	Simulations

