Filling the gap between implicit and behavior: A Rasch modeling of the Implicit Association Test

Ottavia M. Epifania, Anselmi Pasquale, Egidio Robusto

University of Padova, Italy

Cognitive Science Arena, Bressanone-Brixen, February 7th-9th 2020

Introduction

Cognitive resources Explicit Deliberate

Controllable Cognitive resources Explicit Deliberate

Effortless Not controllable Implicit Automatic

Coke Good/Pepsi Bad (CGPB)

Pepsi Good/Coke Bad (CGPB)

Coke Good/Pepsi Bad (CGPB)

CokePepsiGoodBad

Pepsi Good/Coke Bad (CGPB)

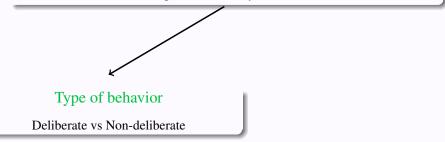
$$Dscore = \frac{M_{cgpb} - M_{pgcb}}{s_{cgpb,pgcb}}$$

Predictive Ability

D-score has a low predictive ability of behavioral outcomes

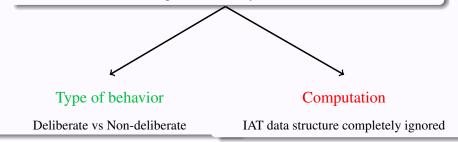
Predictive Ability

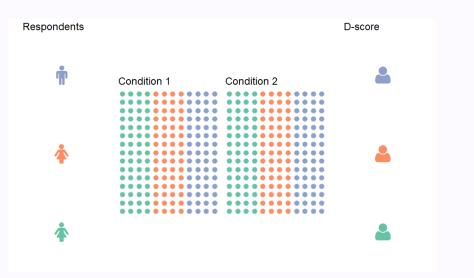
D-score has a low predictive ability of behavioral outcomes



Predictive Ability

D-score has a low predictive ability of behavioral outcomes





Linear Mixed Effect Models (LMMs) allow for:

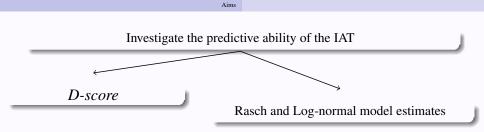
 \star Accounting for (potentially) all the sources of variability and dependency

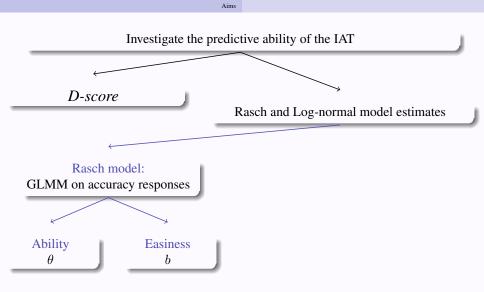
 $\mathbf{\mathcal{T}}$ Gathering information at the stimuli level

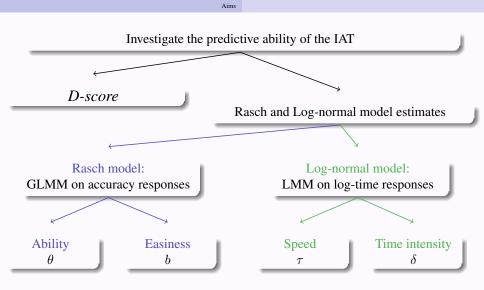
★ Estimating Rasch and Log-normal models parameters

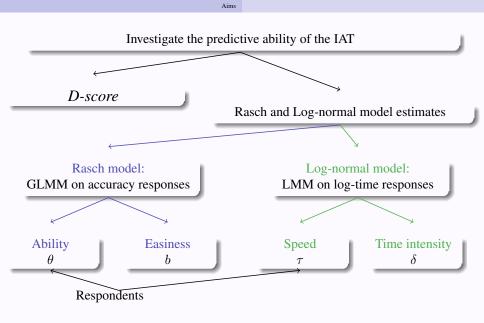
Aims

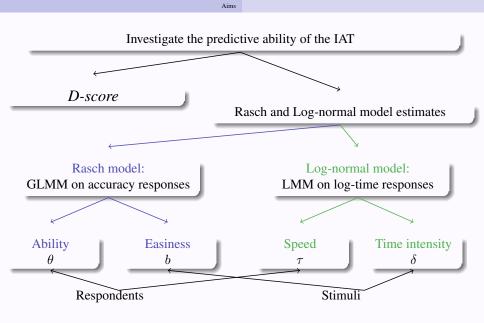
Investigate the predictive ability of the IAT











Models Specification

The expected response y for the observation i = 1, ..., I for respondent j = 1, ..., J on stimulus k = 1, ..., K in condition l = 1, ..., L:

Model 1:

$$y_i = logit^{-1}(\alpha + \beta l_i + \alpha_{k[i]} + \beta_{j[i]}l_i + \epsilon_i)$$

 $\alpha_k \sim \mathcal{N}(0, \sigma_k^2)$, between–stimuli variability. $\beta_l \sim \mathcal{MVN}(0, \Sigma_l)$, within–respondents between–conditions variability

Model 2:

$$y_i = logit^{-1}(\alpha + \beta l_i + \alpha_{j[i]} + \beta_{k[i]}l_i + \epsilon_i)$$

 $\alpha_j \sim \mathcal{N}(0, \sigma_j^2)$, between–respondents variability. $\beta_k \sim \mathcal{MVN}(0, \Sigma_l)$, within–stimuli between–conditions variability.

Model 3:

$$y_i = logit^{-1}(\alpha + \beta l_i + \alpha_{j[i]} + \alpha_{k[i]} + \epsilon_i)$$

 $\alpha_j \sim \mathcal{N}(0, \sigma_j^2)$, between–respondents variability. $\alpha_k \sim \mathcal{N}(0, \sigma_k^2)$, between–stimuli variability.

Accuracy: $\epsilon \sim \mathcal{L}(0, \sigma^2)$ Log-time: $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Fixed Effects

Accuracy model (Rasch Model estimates):

	Respondents parameters	Stimuli parameters
Model 1	Condition–specific (θ_{jl})	Overall (b_k)
Model 2	Overall (θ_j)	Condition–specific (b_{kl})
Model 3	Overall $(\hat{\theta_l})$	Overall (b_k)

Log-time model (Log-normal Model estimates):

	Respondents parameters	Stimuli parameters
Model 1	Condition–specific (τ_{jl})	Overall (δ_k)
Model 2	Overall (τ_j)	Condition–specific (δ_{kl})
Model 3	Overall (τ_j)	Overall (δ_k)

Method

Method

Valenced words

- Positive words (n = 13): good, laughter, pleasure, glory, peace, happiness, joy, love, marvelous, beautiful, excellent, paradise, wonderful
- Negative words (n = 13): evil, bad, horrible, terrible, annoying, pain, failure, hate, nasty, disaster, agony, ugly, disgust

Chocolate images (Milk = 7, Dark = 7)

Behavioral choice at the end of the experiment

Participants: 74 (F = 71.62%, Age = 24.08 ± 2.88 years), $I_{jl} = 60$

Results

Results

Accuracy				Response times		
Model	AIC	BIC	Deviance	AIC	BIC	Deviance
1	Failed to converge			7159.23	7208.87	7145.23
2	3625.58	3668.13	3613.58	Ab	errant estin	nates
3	3627.71	3656.07	3619.71	7856.45	7891.91	8875.00

Accuracy			Response times			
Model	AIC	BIC	Deviance	AIC	BIC	Deviance
1	Failed to converge			7159.23	7208.87	7145.23
2	3625.58	3668.13	3613.58	Ab	errant estin	nates
3	3627.71	3656.07	3619.71	7856.45	7891.91	8875.00

Accuracy model: Model 2

- *b*_{dgmb}: Stimuli easiness in Dark-Good/Milk-Bad Condition.
- b_{mgdb}: Stimuli easiness in Milk-Good/Dark-Bad Condition.
- Overall participants' ability (θ_j), across stimuli/conditions.

Accuracy			Response times			
Model	AIC	BIC	Deviance	AIC	BIC	Deviance
1	Failed to converge			7159.23	7208.87	7145.23
2	3625.58	3668.13	3613.58	Ab	errant estin	nates
3	3627.71	3656.07	3619.71	7856.45	7891.91	8875.00

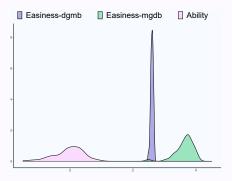
Accuracy model: Model 2

- *b*_{dgmb}: Stimuli easiness in Dark-Good/Milk-Bad Condition.
- b_{mgdb}: Stimuli easiness in Milk-Good/Dark-Bad Condition.
- Overall participants' ability (θ_j), across stimuli/conditions.

Log-time model: Model 1

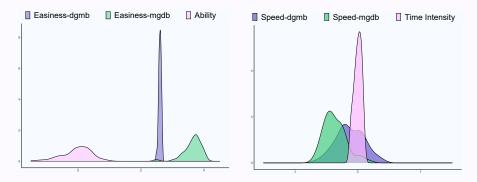
- τ_{dgmb}: Participants' speed in Dark-Good/Milk-Bad Condition.
- τ_{mgdb}: Participants' speed in Milk-Good/Dark-Bad Condition.
- Overall stimuli time intensity (δ_k), across participants/across conditions.

Rasch model:



Rasch model:

Log-normal model:



Dark Chocolate Choice (DCC) = 0

Milk Chocolate Choice (MCC) = 1

Differential measures:

Choice $\sim D$ -score

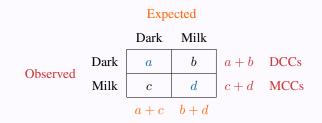
Choice \sim Speed-differential

Single components:

Choice $\sim M_{\rm dgmb} + M_{\rm mgdb}$

Choice $\sim \tau_{\rm dgmb} + \tau_{\rm mgdb}$

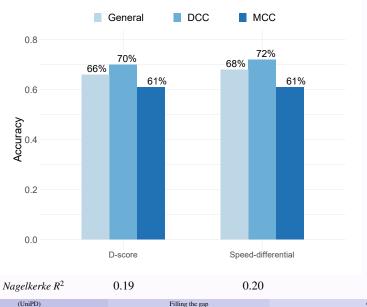
speed-differential = $\tau_{dgmb} - \tau_{mgdb}$



$\frac{a+d}{a+b+c+d}$	General Accuracy (i.e., ratio between model correctly
	identified choices and total number of choices)
$\frac{a}{a+b}$	DCC Accuracy (i.e., ratio between model correctly identi-
	fied DCCs and observed number of DCCs)
$\frac{d}{c+d}$	MCC Accuracy (i.e., ratio between model correctly iden-
	tified MCCs and observed number of MCCs)

Results Choice prediction

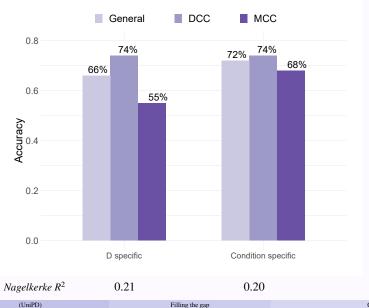
Differential measures



CSA2020 17/25

Results Choice prediction

Single components



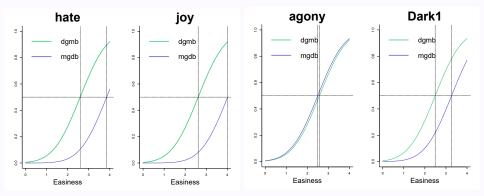
Not over yet!

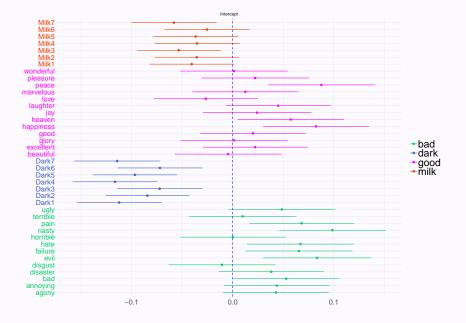
Results Stimuli easiness

Item Characteristic Curves (ICC)

High contribution stimuli

Low contribution stimuli





Conclusions

IAT functioning & meaning

Fine-grained analysis:

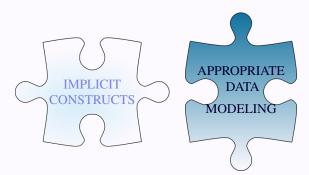
- Stimuli level:
 - Malfunctioning stimuli
 - Stimuli driving the IAT effect

Respondents' level:

- Respondents' accuracy consistent between conditions
- Respondents' speed affected by the associative condition

Choice prediction

- Differential measures vs single components
- Random noise with appropriate random structure & behavioral outcomes



Thank you!

