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Introduction  The Implicit Association Test

Predictive Ability

D-score has a low predictive ability of behavioral outcomes

Type of behavior Computation

Deliberate vs Non-deliberate IAT data structure completely ignored

(UniPD) Filling the gap CSA2020 4/25



The Implicit Association Test
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Linear Mixed Effect Models

Linear Mixed Effect Models (LMMs) allow for:

Ind Accounting for (potentially) all the sources of variability and dependency
o Gathering information at the stimuli level

ok Estimating Rasch and Log-normal models parameters

(UniPD) Filling the gap CSA2020

6/25



Investigate the predictive ability of the IAT J




Investigate the predictive ability of the IAT }

— T

D-score )

Rasch and Log-normal model estimates }

(UniPD) Filling the gap CSA2020 7/25



Investigate the predictive ability of the IAT }

— T~

D-score J

Rasch and Log-normal model estimates )

| —

Rasch model: J

GLMM on accuracy responses

—

Ability Easiness
A B

(UniPD) Filling the gap CSA2020 7/25



Investigate the predictive ability of the IAT )

/\

D-score

Rasch and Log-normal model estimates )

—

Rasch model: J Log-normal model: J

GLMM on accuracy responses LMM on log-time responses

Ability Easiness Speed Time intensity
A B - ) )

(UniPD) Filling the gap CSA2020 7/25



Investigate the predictive ability of the IAT }

/\

D-score

Rasch and Log-normal model estimates )

—

Rasch model: J Log-normal model: J

GLMM on accuracy responses LMM on log-time responses

Ability Easiness Speed Time intensity
2 B - ) )

(UniPD) Filling the gap CSA2020 7/25



Investigate the predictive ability of the IAT }

— T

D-score )

Rasch and Log-normal model estimates }

—

Rasch model: J Log-normal model: J

GLMM on accuracy responses LMM on log-time responses

Ability J Easiness J Speed J Time intensity J

0 b T 1)

Respondents Stimuli

(UniPD) Filling the gap CSA2020 7/25



Models Specification

The expected response y for the observationi = 1, ..., I for respondent j = 1,. .., J on stimulus
k=1,...,Kincondition! =1,..., L:
Model 1:

y; = logit™" (o + Bli + oups) + Bjpgls + &)

aj ~ N(0,0%), between—stimuli variability.
By ~ MVN(0,%;), within-respondents between—conditions variability

Model 2:
.,
y; = logit™ (a + Bl; + a;[) + Bepls + €)
aj ~ N(0, crj2.), between—respondents variability.
Bx ~ MVYN(0,%;), within—stimuli between—conditions variability.
Model 3:

= logitil(a + Bl; + Qi) + Qg + €i)

aj ~ N(0, 0]2), between—respondents variability.
ag ~ N(0, UZ), between—stimuli variability.

Accuracy: € ~ £(0,02)
Log-time: € ~ N (0, o2) Fixed Effects
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Models Specification

Accuracy model (Rasch Model estimates):

Respondents parameters  Stimuli parameters

Model 1 ~ Condition—specific (6;;) Overall (by)
Model 2 Overall (6;) Condition—specific (bx;)
Model 3 Overall (6;) Overall (by,)

Log-time model (Log-normal Model estimates):

Respondents parameters  Stimuli parameters

Model 1 Condition—specific (7;;) Overall (d%)
Model 2 Overall (7;) Condition—specific (dx;)
Model 3 Overall (7;) Overall (0y)
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Method  Chocolate IAT

Valenced words
@ Positive words (n = 13): good, laughter, pleasure, glory, peace, happiness, joy, love,
marvelous, beautiful, excellent, paradise, wonderful
@ Negative words (n = 13): evil, bad, horrible, terrible, annoying, pain, failure, hate,
nasty, disaster, agony, ugly, disgust

Chocolate images (Milk =7, Dark =7)

=8 &
”‘l“

Behavioral choice at the end of the experiment
Participants: 74 (F = 71.62%, Age = 24.08 £ 2.88 years), I;; = 60
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Results Model comparison

Accuracy Response times
Model AIC BIC Deviance AIC BIC Deviance
1 Failed to converge 7159.23 7208.87 7145.23
2 3625.58 3668.13 3613.58 Aberrant estimates
3 3627.71 3656.07 3619.71 7856.45 7891.91 8875.00
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Accuracy model:
Model 2

@ bygmp: Stimuli easiness in
Dark-Good/Milk-Bad Condition.

@ bygdp: Stimuli easiness in
Milk-Good/Dark-Bad Condition.

@ Overall participants’ ability (6), across

stimuli/conditions.
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Log-time model:
Model 1

Tdgmb: Participants’ speed in
Dark-Good/Milk-Bad Condition.

Tmgdb: Participants’ speed in
Milk-Good/Dark-Bad Condition.

Overall stimuli time intensity (d ), across

participants/across conditions.

CSA2020

13/25



Results  Parameters’ distributions

Rasch model:

[] Easiness-dgmb  [] Easiness-mgdb  [] Ability
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Results  Parameters’ distributions

Rasch model: Log-normal model:

[ Easiness-dgmb  [] Easiness-mgdb  [] Ability [l Speed-dgmb [ Speed-mgdb  [] Time Intensity

(UniPD) Filling the gap CSA2020 14725



Dark Chocolate Choice
(DCC)=0

Differential measures:

Choice ~ D-score

Results  Choice prediction

Milk Chocolate Choice
MCO) =1

Choice ~ Speed-differential

Single components:

Choice ~ Magmb + Mmgab

Choice ~ Tggmb + Tmedb

speed-differential = Tggmb — Tmgdb
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Results

Choice prediction

Expected
Dark Milk
a b
c d
a+c b+d

a+b DCCs
c+d MCCs

General Accuracy (i.e., ratio between model correctly

identified choices and total number of choices)

DCC Accuracy (.e., ratio between model correctly identi-

fied DCCs and observed number of DCCs)

MCC Accuracy (i.e., ratio between model correctly iden-

tified MCCs and observed number of MCCs)

Dark
Observed
Milk
a+d
a+b+c+d
_a_
a+b
_d_
c+d
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Results  Choice prediction

Differential measures

General I DCC H mMCC
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Results  Choice prediction

Single components

General i DCC Bl mCcC
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Not over yet!



Results  Stimuli easiness

Item Characteristic Curves (ICC)
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Conclusions

IAT functioning & meaning

Fine-grained analysis:

© Stimuli level:

e Malfunctioning stimuli
o Stimuli driving the IAT effect

© Respondents’ level:
e Respondents’ accuracy
consistent between conditions
o Respondents’ speed affected by
the associative condition

(UniPD) Filling the gap
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o Differential measures vs single
components

@ Random noise with appropriate
random structure & behavioral
outcomes
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Conclusions
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Conclusions
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