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Introduction The Implicit Association Test

Coke Good/Pepsi Bad (CGPB) Pepsi Good/Coke Bad (CGPB)

Dscore =
Mcgpb −Mpgcb

scgpb,pgcb
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Introduction The Implicit Association Test

Predictive Ability

D-score has a low predictive ability of behavioral outcomes

Type of behavior

Deliberate vs Non-deliberate

Computation

IAT data structure completely ignored
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Introduction The Implicit Association Test
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Linear Mixed Effect Models

Linear Mixed Effect Models (LMMs) allow for:

Accounting for (potentially) all the sources of variability and dependency

Gathering information at the stimuli level

Estimating Rasch and Log-normal models parameters
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Aims

Investigate the predictive ability of the IAT

D-score
Rasch and Log-normal model estimates

Rasch model:
GLMM on accuracy responses

Log-normal model:
LMM on log-time responses

Ability
θ

Easiness
b

Speed
τ

Time intensity
δ

Respondents Stimuli
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Models Specification

The expected response y for the observation i = 1, . . . , I for respondent j = 1, . . . , J on stimulus
k = 1, . . . ,K in condition l = 1, . . . , L:

Model 1:
yi = logit−1(α+ βliα+ βli + αk[i] + βj[i]li + εi)

αk ∼ N (0, σ2
k), between–stimuli variability.

βl ∼MVN (0,Σl), within–respondents between–conditions variability

Model 2:
yi = logit−1(α+ βliα+ βli + αj[i] + βk[i]li + εi)

αj ∼ N (0, σ2
j ), between–respondents variability.

βk ∼MVN (0,Σl), within–stimuli between–conditions variability.

Model 3:
yi = logit−1(α+ βliα+ βli + αj[i] + αk[i] + εi)

αj ∼ N (0, σ2
j ), between–respondents variability.

αk ∼ N (0, σ2
k), between–stimuli variability.

Accuracy: ε ∼ L(0, σ2)
Log-time: ε ∼ N (0, σ2) Fixed Effects

α+ βli

α+ βli

α+ βli
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Models Specification

Accuracy model (Rasch Model estimates):

Respondents parameters Stimuli parameters

Model 1 Condition–specific (θjl) Overall (bk)
Model 2 Overall (θj) Condition–specific (bkl)
Model 3 Overall (θl) Overall (bk)

Log-time model (Log-normal Model estimates):

Respondents parameters Stimuli parameters

Model 1 Condition–specific (τjl) Overall (δk)
Model 2 Overall (τj) Condition–specific (δkl)
Model 3 Overall (τj) Overall (δk)
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Method

Method
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Method Chocolate IAT

Valenced words
Positive words (n = 13): good, laughter, pleasure, glory, peace, happiness, joy, love,
marvelous, beautiful, excellent, paradise, wonderful

Negative words (n = 13): evil, bad, horrible, terrible, annoying, pain, failure, hate,
nasty, disaster, agony, ugly, disgust

Chocolate images (Milk = 7, Dark = 7)

Behavioral choice at the end of the experiment

Participants: 74 (F = 71.62%, Age = 24.08 ± 2.88 years), Ijl = 60
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Results

Results
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Results Model comparison

Accuracy Response times

Model AIC BIC Deviance AIC BIC Deviance

1 Failed to converge 7159.23 7208.87 7145.23

2 3625.58 3668.13 3613.58 Aberrant estimates

3 3627.71 3656.07 3619.71 7856.45 7891.91 8875.00

Accuracy model:
Model 2

bdgmb: Stimuli easiness in
Dark-Good/Milk-Bad Condition.

bmgdb: Stimuli easiness in
Milk-Good/Dark-Bad Condition.

Overall participants’ ability (θj ), across
stimuli/conditions.

Log-time model:
Model 1

τdgmb: Participants’ speed in
Dark-Good/Milk-Bad Condition.

τmgdb: Participants’ speed in
Milk-Good/Dark-Bad Condition.

Overall stimuli time intensity (δk), across
participants/across conditions.
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Results Parameters’ distributions

Rasch model:
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Results Choice prediction

Dark Chocolate Choice
(DCC) = 0

Milk Chocolate Choice
(MCC) = 1

Differential measures:

Choice ∼ D-score Choice ∼ Speed-differential

Single components:

Choice ∼ Mdgmb +Mmgdb Choice ∼ τdgmb + τmgdb

speed-differential = τdgmb − τmgdb
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Results Choice prediction

Expected

Dark Milk

Observed
Dark a b a+ b DCCs

Milk c d c+ d MCCs

a+ c b+ d

a+d
a+b+c+d General Accuracy (i.e., ratio between model correctly

identified choices and total number of choices)

a
a+b DCC Accuracy (i.e., ratio between model correctly identi-

fied DCCs and observed number of DCCs)

d
c+d MCC Accuracy (i.e., ratio between model correctly iden-

tified MCCs and observed number of MCCs)
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Results Choice prediction

Differential measures
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Results Choice prediction

Single components
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Not over yet!



Results Stimuli easiness

Item Characteristic Curves (ICC)

High contribution stimuli
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Results Stimuli time intensity

Intercept
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Conclusions

Conclusions
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Conclusions

IAT functioning & meaning

Fine-grained analysis:

1 Stimuli level:
Malfunctioning stimuli
Stimuli driving the IAT effect

2 Respondents’ level:
Respondents’ accuracy
consistent between conditions
Respondents’ speed affected by
the associative condition

Choice prediction

Differential measures vs single
components
Random noise with appropriate
random structure & behavioral
outcomes
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Conclusions

IMPLICIT
CONSTRUCTS

APPROPRIATE
DATA

MODELING

BEHAVIORS
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Thank you!

LATEX
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