Don't say CAT: New Item Response Theory approaches for developing short test forms

Ottavia M. Epifania^{1,2}, Pasquale Anselmi¹, Egidio Robusto¹ ottavia.epifania@unipd.it ¹Univerisity of Padova ²Catholic University of the Sacred Heart

September 30th 2022, Padova

XXX Annual Conference of the Italian Psychology Association (AIP)

1 Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets

4 Simulation study

5 Some final remarks

Don't say CAT

CAT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Don't say CAT └─ Intro

Computerized Adaptive Testing

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., for each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across θ levels (i.e., across all respondents)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., for each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

lssue

Different short test forms for each respondent \rightarrow Potential fairness issues in assessments, e.g. for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across θ levels (i.e., across all respondents)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., for each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

lssue

Different short test forms for each respondent \rightarrow Potential fairness issues in assessments, e.g. for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across θ levels (i.e., across all respondents)

lssue

Not being tailored to any θ level of interest \to Potentially more items are needed to cover a wide range of θs

Aim

New IRT-based procedures for shortening tests

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Aim

New IRT-based procedures for shortening tests

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Equal for all respondents

Equal for all respondents

Tailored to specific levels of the latent trait

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests

Benchmark procedure Procedures based on θ targets

4 Simulation study

5 Some final remarks

Don't say CAT IRT and Information Functions 2-PL Model

Item Response Theory 2-PL Model

$$P(x_{pj} = 1 | \theta_p, b_j, a_j) = \frac{exp[a_j(\theta_p - b_j)]}{1 + exp[a_j(\theta_p - b_j)]}$$

where:

 $P(x_{pj} = 1)$: Probability of a correct response to item j by respondent p θ_p : Ability of respondent p

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- b_j : Difficulty of item j
- a_j : Discrimination of item j

Don't say CAT IRT and Information Functions 2-PL Model

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Don't say CAT IRT and Information Functions 2-PL Model

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Don't say CAT LIRT and Information Functions L2-PL Model

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Item Information Function

 $IIF_j = a_j^2[P(\theta)(1 - P(\theta))]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Item Information Function

 $IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Item Information Function

 $IIF_j = a_j^2[P(\theta)(1 - P(\theta))]$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Test Information Function

$$TIF = \sum_{j=1}^{J} IIF_j$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Item Information Function

$$IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$$

Test Information Function

$$TIF = \sum_{j=1}^{J} IIF_j$$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Figure 2: $TIF = IIF_1 + IIF_2 + IIF_3$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

1 Introduction

2 Item Response Theory and information functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 IRT procedures for shortening tests

Benchmark procedure Procedures based on θ targets

4 Simulation study

5 Some final remarks

1 Introduction

2 Item Response Theory and information functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets

4 Simulation study

5 Some final remarks

Benchmark procedure

Selected items \rightarrow items with the highest $\it IIFs$

e.g.: 3-item short form from 10-item full-length test

item	b	а	IIF
1	-0.67	0.71	0.08
2	0.50	1.19	0.15
3	-2.43	0.25	0.01
4	2.12	1.98	0.24
5	1.72	0.39	0.03
6	-2.28	1.62	0.19
7	0.64	0.50	0.05
8	-2.51	1.68	0.19
9	-0.66	0.44	0.04
10	0.72	0.33	0.02

Benchmark procedure

Selected items \rightarrow items with the highest $\it IIFs$

e.g.: 3-item short form from 10-item full-length test

item	Ь	а	IIF
4	2.12	1.98	0.24
8	-2.51	1.68	0.19
6	-2.28	1.62	0.19
2	0.50	1.19	0.15
1	-0.67	0.71	0.08
7	0.64	0.50	0.05
9	-0.66	0.44	0.04
5	1.72	0.39	0.03
10	0.72	0.33	0.02
3	-2.43	0.25	0.01

1 Introduction

2 Item Response Theory and information functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets

4 Simulation study

6 Some final remarks

	θ_1'	θ_2'	θ'_3							
item	-2.67	0.01	2.67							
1										
2										
3										
4										
5										
6										
7										
8										
9										
10			•	< Ø	•	 •	- E	•	-	500

	θ'_1	θ_2'	θ'_3
item	-2.67	$0.\bar{0}1$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

	θ_1'	θ_2'	θ'_3
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	θ_1'	θ_2'	θ'_3
item	-2.67	$0.\bar{0}1$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

同 ト イヨ ト イヨ ト ヨ つくべ

	θ_1'	θ_2'	θ'_3
item	-2.67	$0.\bar{0}1$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

	θ_1'	θ_2'	θ'_3
item	-2.67	$0.\bar{0}1$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

	θ_1'	θ_2'	θ'_3
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	θ_1'	θ_2'	θ'_3
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Don't say CAT \Box Short form procedures \Box Procedures based on θ targets

Segmenting the latent trait

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Segmenting the latent trait

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Equal Intervals Procedure Equal segmentation

Segmenting the latent trait

Equal Intervals Procedure Equal segmentation

Unequal Intervals Procedure Clustering

1 Introduction

2 Item Response Theory and information functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets

4 Simulation study

5 Some final remarks

Comparison between the item selection procedures:

- Benchmark procedure (BP): The *N* items with the highest *IIF*s are selected from the full-length test
- Equal Intervals Procedure (EIP): The N items that maximize the information for each θ' obtained by dividing the latent trait into equal intervals are selected
- Unequal Intervals Procedure (UIP): The N items that maximize the information for each θ' obtained by clustering the latent trait are selected
- **Random Procedure (RP)**: *N* items are randomly selected from the full-length tests

10, 30, 50, 70, 90-item short test forms from a 100-item full-length test

1000 respondents p

- 1 Normal distribution $p \sim \mathcal{N}(0, 1)$
- 2 Positive skewed distribution $p \sim Beta(1, 100)$ (linearly transformed to obtain negative values)
- 3 Uniform distribution $p \sim \mathcal{U}(-3,3)$

100 items *j*:

An overall look

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

A closer look

Figure 4: TIF of the 10-item short test form

・ロト・四ト・モート ヨー うへの

An even closer look

Figure 5: $bias = \theta - \hat{\theta}$ of the 10-item short test form

1 Introduction

2 Item Response Theory and information functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets

4 Simulation study

5 Some final remarks

Good!

There's no "one-fits-all" solution

The $\boldsymbol{\theta}$ distribution is a key element

Good!

There's no "one-fits-all" solution

The $\boldsymbol{\theta}$ distribution is a key element

..but work is still needed

Real life applications are missing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The CAT is missing

Thank you!

ottavia.epifania@unipd.it

