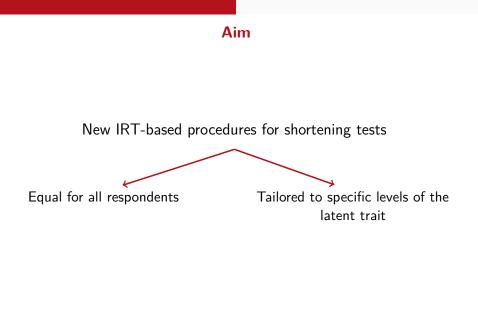
PAUCI SED BONI: NEW ITEM RESPONSE THEORY-BASED PROCEDURES FOR SHORTENING TESTS

Ottavia M. Epifania^{1,2}, Pasquale Anselmi¹, Egidio Robusto¹ ottavia.epifania@unipd.it ¹Univerisity of Padova ²Catholic University of the Sacred Heart

September 7th 2022, Rovereto

Meeting of the European Mathematical Psyhcology Group

New IRT-based procedures for shortening tests


< ∃ ►

New IRT-based procedures for shortening tests

Equal for all respondents

O.M.E., P.A., E.R.

O.M.E., P.A., E.R.

EMPG-2022 2 / 28

Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

Simulation study

5 Some final remarks

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each latent trait level (i.e., for each person)

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across all latent trait levels (i.e., across all respondents)

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each latent trait level (i.e., for each person)

lssue

Different short test forms for each person \to Potential fairness issues in assessments, e.g., for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across all latent trait levels (i.e., across all respondents)

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each latent trait level (i.e., for each person)

lssue

Different short test forms for each person \to Potential fairness issues in assessments, e.g., for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across all latent trait levels (i.e., across all respondents)

lssue

Not being tailored to any trait level of interest \to Potentially more items are needed to cover a wide range of the latent trait

Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

4 Simulation study

5 Some final remarks

Item Response Theory 2-PL Model

$$P(x_{pj} = 1 | \theta_p, b_j, a_j) = \frac{exp[a_j(\theta_p - b_j)]}{1 + exp[a_j(\theta_p - b_j)]}$$

where:

 $P(x_{pj} = 1)$: Probability of a correct response to item j by person p θ_p : Ability of person p

- b_j : Difficulty of item j
- a_j : Discrimination of item j

< ∃ > <

Item Information Function

 $IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$

Image: Image:

★ ∃ ► ★

Item Information Function

 $IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$

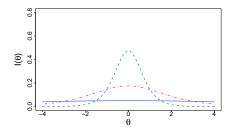


Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Item Information Function

$$IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$$

Test Information Function

$$TIF = \sum_{j=1}^{J} IIF_j$$

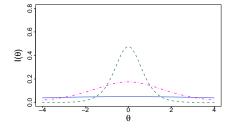
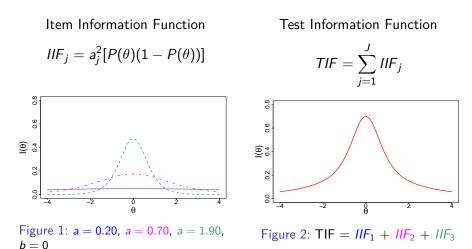



Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

∃ ▶ ∢

1 Introduction

2 Item Response Theory and information functions

IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

Simulation study

5 Some final remarks

Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

Simulation study

5 Some final remarks

Benchmark procedure

Create a short test form composed of N items \rightarrow Select the N items with the highest *IIF*s:

• The *IIF*s of the *J* items of the full-length test are sorted in decreasing order:

$$iif = (\max_{1 < j < J} IIF_j, \dots, \min_{1 < j < J} IIF_j)$$

• Items with *IIF*s from 1 to N, N < J, in *iif* are selected to be included in the short test form

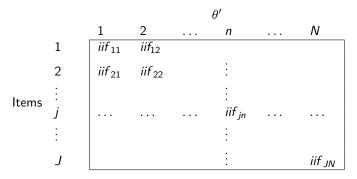
Introduction

2 Item Response Theory and information functions

IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

Simulation study


5 Some final remarks

Procedures based on θ **targets**

Create a short test form composed of N items:

- Define N trait levels of interest $\rightarrow \theta$ targets (θ 's)
- Choose the items that most precisely assess the identified $\theta's$

IIF^{$J \times N$}: Matrix of items information functions *iif* _{*jn*}:

j = 1, ..., J: Full-length test composed of J items; n = 1, ..., N: Items to be included in the N-item short test form (selected according to the $N \theta$ targets, θ 's);

EMPG-2022 13/28

k = 0, ..., K: Scalar denoting the iterations of the procedures (K = N - 1);

 $S^k \subseteq \{1, \dots, J\}$: Set of items selected to be included in the short test form up to iteration k.

 $Q^k \subseteq \{1, \dots, N\}$: Set of θ 's satisfied up to iteration k;

k = 0, ..., K: Scalar denoting the iterations of the procedures (K = N - 1); $S^k \subseteq \{1, ..., J\}$: Set of items selected to be included in the short test form up to iteration k. $Q^k \subseteq \{1, ..., N\}$: Set of θ 's satisfied up to iteration k;

At k = 0:

•
$$S^0 = \emptyset$$

•
$$Q^0 = \emptyset$$

The procedure cycles steps 1 to 3 until k = K:

• Select
$$iif_{jn}^k = \max_{j \in J \setminus S^k, n \in N \setminus Q^k} IIF(j, n);$$

2 Compute $S^{k+1} = S^k \cup \{j\}$ as the set of item(s) selected at k;

Sompute $Q^{k+1} = Q^k \cup \{n\}$ as the set of θ 's satisfied at k;

At iteration K, $|Q^{K+1}| = N$ and $|S^{K+1}| = N$

Example

Aim \rightarrow Obtain a 3-item scale (N = 3) from a 10-item scale (J = 10).

Image: Image:

★ ∃ ► ★

Example

Aim \rightarrow Obtain a 3-item scale (N = 3) from a 10-item scale (J = 10).

	0.12	0.12	0.09	1
IIF =	0.14	0.32	0.31	
	0.02	0.01	0.01	
	0.01	0.05	0.43	
	0.03	0.03	0.04	
	0.35	0.07	0.01	
	0.05	0.06	0.06	
	0.27	0.04	0.01	
	0.05	0.05	0.04	
	0.02	0.03	0.03	

At $k=0
ightarrow S^0=\emptyset$, $Q^0=\emptyset$

→ ∃ →

Γ	0.12	0.12	0.09	-
	0.14	0.32	0.31	
	0.02	0.01	0.01	
	0.01	0.05	0.43	
	0.03	0.03	0.04	
	0.35	0.07	0.01	
	0.05	0.06	0.06	
	0.27	0.04	0.01	
	0.05	0.05	0.04	
L	0.02	0.03	0.03	_

IIF =

< □ > < □ > < □ > < □ > < □ >

$$IIF = \begin{bmatrix} 0.12 & 0.12 & 0.09 \\ 0.14 & 0.32 & 0.31 \\ 0.02 & 0.01 & 0.01 \\ 0.01 & 0.05 & 0.43 \\ 0.03 & 0.03 & 0.04 \\ 0.35 & 0.07 & 0.01 \\ 0.05 & 0.06 & 0.06 \\ 0.27 & 0.04 & 0.01 \\ 0.05 & 0.05 & 0.04 \\ 0.02 & 0.03 & 0.03 \end{bmatrix}$$

$$iif_{\max}^{0} = \max_{j \in J \setminus S^{0}, n \in N \setminus Q^{0}} IIF = IIF(4,3) = 0.43$$
$$S^{1} = S^{0} \cup \{4\} = \{4\}$$
$$Q^{1} = Q^{0} \cup \{3\} = \{3\}$$

メロト メポト メヨト メヨト

IIF =	Γ	0.12	0.12	0.09	7
		0.14	0.32	0.31	
		0.02	0.01	0.01	
		0.01	0.05	0.43	
		0.03	0.03	0.04	
		0.35	0.07	0.01	
		0.05	0.06	0.06	
		0.27	0.04	0.01	
		0.05	0.05	0.04	
	L	0.02	0.03	0.03	

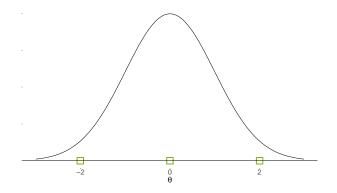
$$iif_{max}^{1} = \max_{j \in J \setminus S^{1}, n \in N \setminus Q^{1}} IIF = IIF(6, 1) = 0.35$$
$$S^{2} = S^{1} \cup \{6\} = \{4, 6\}$$
$$Q^{2} = Q^{1} \cup \{1\} = \{3, 1\}$$

イロト イヨト イヨト イヨト

	0.12	0.12	0.09	
	0.14	0.32	0.31	
	0.02	0.01	0.01	
	0.01	0.05	0.43	
	0.03	0.03	0.04	
IIF =	0.35	0.07	0.01	
	0.05	0.06	0.06	
	0.27	0.04	0.01	
	0.05	0.05	0.04	
	0.02	0.03	0.03	

 $iif_{max}^{2} = \max_{j \in J \setminus S^{2}, n \in N \setminus Q^{2}} \mathsf{IIF} = \mathsf{IIF}(2,2) = 0.32$ $S^3 = S^2 \cup \{2\} = \{4, 6, 2\}$ $Q^3 = Q^2 \cup \{2\} = \{3, 1, 2\}$

.

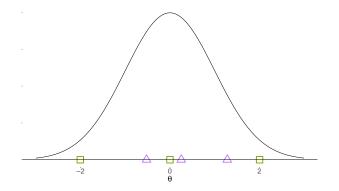


$$iif_{max}^{2} = \max_{j \in J \setminus S^{2}, n \in N \setminus Q^{2}} IIF = IIF(2, 2) = 0.32$$

$$S^{3} = S^{2} \cup \{2\} = \{4, 6, 2\} \qquad \bullet |S^{3}| = 3$$

$$Q^{3} = Q^{2} \cup \{2\} = \{3, 1, 2\} \qquad \bullet |Q^{3}| = 3$$

$$K = 2 = K = 2$$



Equal Intervals Procedure (EIP)

Segmentation in N + 1 intervals of width $w = (\theta_{max} - \theta_{min})/N$ Each interval: $[\theta_{n-1}; \theta_n]$ $\theta'_n = (\theta_{n-1} + \theta_n)/2$

O.M.E., P.A., E.R.

3 1 4

Equal Intervals Procedure (EIP)

Unequal Intervals Procedure (UIP)

Clustering in N clusters

The c_n centroids are the θ 's

Segmentation in N + 1 intervals of width $w = (\theta_{max} - \theta_{min})/N$ Each interval: $[\theta_{n-1}; \theta_n]$

$$\theta_n' = (\theta_{n-1} + \theta_n)/2$$

O.M.E., P.A., E.R.

Pauci sed boni

1 Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

4 Simulation study

5 Some final remarks

Comparison between the item selection procedures:

- Benchmark procedure (BP): The N items with the highest *IIFs* are selected from the full-length test
- Equal Intervals Procedure (EIP): The N items that maximize the information for each θ' obtained by dividing the latent trait into equal intervals are selected
- Unequal Intervals Procedure (UIP): The N items that maximize the information for each θ' obtained by clustering the latent trait are selected
- **Random Procedure (RP)**: *N* items are randomly selected from the full-length tests

10, 30, 50, 70, 90-item short test forms from a 100-item full-length test

1000 respondents p

- Normal distribution $p \sim \mathcal{N}(0, 1)$
- Positive skewed distribution $p \sim Beta(1, 100) \text{ (linearly transformed)}$

to obtain negative values)

• Uniform distribution $p \sim \mathcal{U}(-3,3)$

100 items s:

b ~ U(-3,3)
a ~ U(0.40,2)

< ∃ > <

An overall look

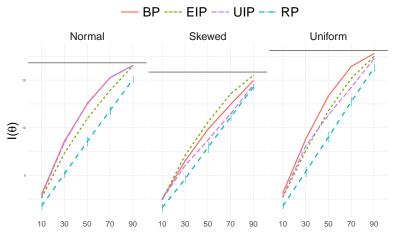


Figure 3: Overall Information of the short test forms

O.M.E., P.A., E.R.

.

< □ > < 凸

A closer look

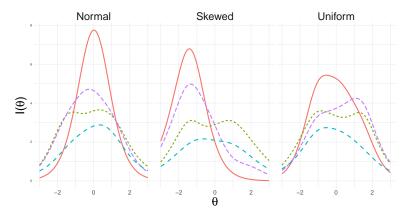


Figure 4: TIF of the 10-item short test form

O.M.E., P.A., E.R.

.

3

An even closer look

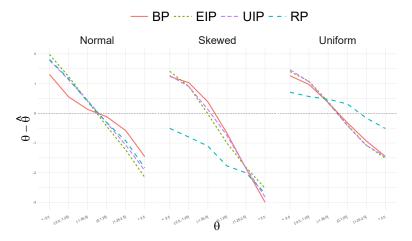


Figure 5: $bias = \theta - \hat{\theta}$ of the 10-item short test form

() 《문》《문》 (문

Image: Image:

1 Introduction

2 Item Response Theory and information functions

3 IRT procedures for shortening tests

- Benchmark procedure
- Procedures based on θ targets

Simulation study

Some final remarks

Good!

There's no "one-fits-all" solution

The θ distribution is a key element

Good!

There's no "one-fits-all" solution

The $\boldsymbol{\theta}$ distribution is a key element

..but work is still needed

Lack of direct comparison with CAT Real life applications are missing

Thank you! ottavia.epifania@unipd.it

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで