Le misure in psicologia sono significanti? Il caso del test della Torre di Londra

Ottavia M. Epifania, Luca Stefanutti, Pasquale Anselmi, Andrea Brancaccio, Debora de Chiusole

Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata, Università di Padova

Convegno AIP-Sezione Sperimentale 2023 Simposio: Crisi di replicabilità o crisi di validità? L'importanza delle misure

19 Settembre 2023

◆□▶ ◆舂▶ ★注▶ ★注▶ … 注…

The case in point
Tower of London
Securing systems

3 Real data application

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable.

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable.

Meaningful comparisons

The comparison between a and b is meaningful if it is invariant under all the unit transformations.

Meaningfulness └─Meaningfulness

・ロト・日本・ヨト・ヨー うへぐ

 $\underset{\rm Meaningfulness}{\rm Meaningfulness}$

Meaningfulness └─The case in point

1 Meaningfulness

2

The case in point

- Tower of London
- Scoring systems
- **3** Real data application

Meaningfulness └─The case in point └─Tower of London

1 Meaningfulness

2 The case in point• Tower of London

- Scoring systems
- **3** Real data application

└─The case in point

 ${ \sqsubseteq_{\rm Tower \ of \ London} }$

Starting configuration

Goal configuration

イロト イロト イミト イミト ミニ のへぐ

└─The case in point

└─Tower of London

Starting configuration

Item difficulty influenced by:

- Number of moves
- Number of alternative paths
- Hierarchy of the starting/goal configuration

Goal configuration

└─The case in point

 ${ \sqsubseteq_{\rm Tower \ of \ London} }$

The Tower of London Test (ToL Test) Shallice (1982)

- $\bullet~12~{\rm problems}$
- Same starting configuration
- More than one attempt per item

Problem	Minimum moves	Alternative paths
Example	2	1
1	2	1
2	2	1
3	3	2
4	3	1
5	4	2
6	4	1
7	4	1
8	4	1
9	5	2
10	5	1
11	5	1
12	5	2

Meaningfulness └─The case in point └─Scoring systems

1 Meaningfulness

2 T

The case in point

- Tower of London
- Scoring systems
- **3** Real data application

The case in point

∟_{Scoring systems}

Scoring	Attempts	Response times	Item score	Total score
Shallice 1	\checkmark	\checkmark	0-1	0-12
Shallice 2	×	\checkmark	0-3	0-36
Anderson et al.	\checkmark	\checkmark	0-9	0-108
Kirkorian et al.	\checkmark	×	0-3	0-36

・ロト・日本・ヨト・ヨー うへぐ

└─The case in point

∟_{Scoring systems}

Scoring	Attempts	Response times	Item score	Total score
Shallice 1	\checkmark	\checkmark		
Shallice 2	×	\checkmark	0-3	0-36
Anderson et al.	\checkmark	\checkmark	0-9	0-108
	\checkmark		0-3	

Shallice 2 - SH2

For each of the 12 items:

Assign	if time is
3	$\leq 15 \ {\rm s}$
2	$15\dashv 30~{\rm s}$
1	$30 \dashv 60 \text{ s}$
0	$> 60 \ s$

Anderson et al. – AN

For each of the 12 items:

Assign	if time is
9	$\leq 6 \mathrm{s}$
8	$6 \dashv 10 \text{ s}$
7	$11 \dashv 20~\mathrm{s}$
6	$21\dashv 40~{\rm s}$
5	$41 \dashv 60~{\rm s}$
0	$> 60 \ s$

└─The case in point

∟_{Scoring systems}

Both scorings are based on the discretization of the response times \rightarrow There should not be differences in the **order** of the total score of the respondents according to the scoring method

└─The case in point

∟_{Scoring systems}

Both scorings are based on the discretization of the response times \rightarrow There should not be differences in the **order** of the total score of the respondents according to the scoring method

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 $\begin{tabular}{l} Meaningfulness \\ \begin{tabular}{l} Leal data application \\ \end{tabular} \end{tabular} \end{tabular}$

1 Meaningfulness

- 2 The case in point
 Tower of London
 - Scoring systems

3 Real data application

└─Real data application

Meaningfulness └─Real data application

Is it really bad...?

Respondents $i, j \in \{1, \ldots N\}$

• AN Comparison (Δ_{AN}): The standardized AN score of each subject i is compared against the standardized AN score of every other subject j

$$\Delta_{\mathrm{AN}_{ij}} = z_{\mathrm{AN}_i} - z_{\mathrm{AN}_j}$$

• SH2 Comparison (Δ_{SH2}): The standardized SH2 score of each subject i is compared against the standardized SH2 score of every other subject j

$$\Delta_{\mathrm{SH2}_{ij}} = z_{\mathrm{SH2}_i} - z_{\mathrm{SH2}_j}$$

└─Real data application

Real data application

Meaningfulness └─Real data application

 $\Delta_{AN} > 2 \& \Delta_{SH2} \approx 0$

 $\Delta_{AN}\approx 0 \ \& \ \Delta_{SH2}>2$

- 2 The case in point
 Tower of London
 Scoring systems
- **3** Real data application

Highlights

- $\bullet\,$ Different scoring systems \to The focus is shifted: Fast and furious or slow and steady?
- Different scoring systems might favor a cognitive theory over a contrasting one (raising also replicability issues)

Research founded by the project "Computerized, Adaptive and Personalized Assessment of Executive Functions and Fluid Intelligence" (PRIN 2020, Prot. 20209WKCLL, P.I. Prof. Luca Stefanutti)

Thank you!

ottavia.epifania@unipd.it