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Preface

The advent of measures able to infer mental processes from speed-categorization tasks

opened to the assessment of processes that lie beyond people’s awareness, but that can still

influence their attitudes and social behaviors. These measures are known as implicit mea-

sures, and their use became vastly popular in social sciences. Despite the popularity implicit

measures gained throughout the past decades, a lot of work still needs to be done to find a

psychometrically sound approach to their modeling.

Usually, implicit measures are scored by averaging the response times across stimuli to

obtain respondent-specific scores. This approach is extremely easy and provides a clear and

interpretable measure of the implicit construct under investigation. However, it overlooks the

dependencies related to the systematic variability at both the respondent and stimulus levels,

compromising the reliability and replicability of the results (Judd et al., 2012). Given the

replicability crisis that has been hitting social psychology from the past few years, the need

for more sound, accurate, and reliable methods for the analyses of implicit measure data is

of the uttermost importance. The main objective of the thesis is to provide such rigorous

methods by following three paths: (i) the sound path for a psychometrically more sound

approach to implicit measure data, (ii) the fair path for a fairer comparison between implicit

measures, and (iii) the easy path for an easier, more rigorous, and open source way to score

implicit measures.

The sound path constitutes the core of the thesis. It is an attempt at finding new ap-

proaches for the analysis of implicit measure data by combining a classic of psychometric

theories, the Rasch model, with a Linear Mixed-Effects Model (LMM) approach. The fo-

cus is mostly on one of the most popular, used, and studied implicit measure, the Implicit

Association Test (IAT; Greenwald et al., 1998) and on its single category variant, the Single

Category IAT (SC-IAT; Karpinski & Steinman, 2006). Given their structures, the IAT always

results in a comparative measure of the preference for one object in comparison to its op-

ix
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posite, while the SC-IAT provides an absolute measure of how much an object is liked. As

such, the SC-IAT is often used as an alternative to the IAT when the focus is on the absolute

positive or negative evaluation of one object or when a “natural” contrast category for the

object of interest is not available.

Traditionally, Item Response Theory and Rasch modeling treat items (stimuli) as fixed

factors (i.e., unknown constants that do not vary as a function of the observational units),

while respondents are treated as random factors (i.e., effects that vary according to the ob-

servational units, drawn from a larger distribution) (De Boeck et al., 2011). In this work, a

slightly different approach is followed, consistent with the data structure of implicit measures.

The fully-crossed design characterizing the IAT (see Section 1.4) allows for conceptualizing

the stimuli as a manifestation of the super-ordered category they represent. Thus, the spe-

cific set of stimuli used in an IAT can be taken as just one the possible sets drawn from the

population of stimuli. The sampling variability of the stimuli should be acknowledged by

considering them as random factors and by treating them as random effects to make infer-

ences on the larger population to which they belong. Besides being a statistically more sound

approach, the acknowledgment of the sampling variability of the stimuli implies that each

stimulus potentially has a different functioning and, consequently, a different impact on the

observed responses. By treating the stimuli as random factors, their sampling variability is

accounted for and it can be used to gather the information conveyed by each of them and to

investigate their impact on the observed responses (Wolsiefer et al., 2017). LMMs allow for

considering both the respondents and the stimuli as random factors and for treating both of

them as random effects at the same time, leading to more detailed and generalizable informa-

tion at both levels. Moreover, the flexibility of LMMs makes possible to model together data

derived from different implicit measures administered at the same time, hence accounting for

the between–measures variability typical of within-subjects experimental designs.

However, the use of LMMs for the conjoint analysis of multiple implicit measures ad-

ministered at the same time is not a common approach. Effect size measures, the so-called

D scores, are the most popular scoring procedures for the IAT and the SC-IAT, and they are

often employed for comparing the performance of these measures on several variables used
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as criteria (e.g., the prediction of behavioral outcomes). Beyond being affected by the sys-

tematic variability at the stimulus and respondent levels, these scoring procedures present

other differences potentially affecting the comparison between the two implicit measures and

leading to puzzling results. The fair path aims at a fairer comparison between the IAT and

the SC-IAT by introducing new scoring algorithms for the IAT and the SC-IAT that mini-

mize the (non-necessary) scoring differences potentially affecting the comparison between

the two measures. The alignment of the IAT and the SC-IAT scoring methods should provide

a means for a fairer comparison between the IAT and the SC-IAT, producing (potentially)

more reliable results on the performance of the two measures on different criteria.

Finally, the easy path is oriented at providing open source and easy-to-use tools for the

computation of the IAT and SC-IAT scores. By automating the computational procedure and

providing it open source, computational mistakes are prevented and the algorithms always

result in the same scores that can be easily replicated.

Taken together, the three paths can enhance the replicability of the results obtained with

implicit measures by either introducing psychometrically more valid approaches or by im-

proving the existing ones. The structure of the thesis is as follows.

In Chapter 1, brief definitions of automatic and controlled processes are provided. The

main theoretical frameworks that have been proposed for conceptualizing the distinction be-

tween the two processes are outlined. The description of the IAT follows, along with the

results of a literature review where the use of the IAT in different fields of application was

investigated. The SC-IAT is described as well. The chapter ends with a description of the

fully-crossed design characterizing implicit measures, and with the reasons why this structure

might undermine the replicability of the results if it is not correctly accounted for.

Both the fair and easy paths are presented in Chapter 2. The typical and modified scoring

procedures of the IAT and the SC-IAT are illustrated. The alignment between the administra-

tion and scoring procedures of the IAT and the SC-IAT should provide a comparison between

the predictive abilities of the two measures centered on the implicit measures themselves and

not on the differences ascribable to the scoring and/or administration procedures. The results

of an empirical study reported in this chapter highlighted a better performance of the IAT
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than the SC-IAT in predicting behavioral outcomes.

The easy path in Chapter 2 presents two open source alternatives for the computation of

the IAT and the SC-IAT typical scoring procedures. One is a Shiny app (i.e., DscoreApp;

Epifania et al., 2019; Epifania, Anselmi, & Robusto, 2020a) for the computation of the IAT

D score, while the other is an R package for the computation of the IAT and SC-IAT D scores

(the implicitMeasures package; Epifania, Anselmi, & Robusto, 2020d). DscoreApp

provides the researchers using the IAT with an open source tools able to make the D score

computation easy, without requiring for any programming experience. By automating the

procedure and providing clear labels and descriptions for the identification of each scoring

algorithm, the computational mistakes due to the long and error-prone procedure for cleaning

and preparing the data are prevented, and researchers can always be aware of the specific

algorithm they use for scoring their data. Taken together, these features might enhance the

replicability of the results. DscoreApp presents two main shortcomings nonetheless. Firstly,

since the code is put into the Shiny interface, it is not possible to call and run it from the

command line, hence making impossible to reproduce it. While this might not constitute a

problem for the average user, it is a critical issue in an open science framework, according

to which all the codes used for the analyses should be accessible at any time. Nevertheless,

this issue can be overcome by storing the code in a public repository, such as GitHub, as it

was done for DscoreApp. Secondly, DscoreApp only computes the score for the IAT. The

implicitMeasures package is an R package developed for overcoming the two main

limitations of DscoreApp. The package also includes functions for cleaning the data sets of

the IAT and SC-IAT and for plotting their results at either the individual or sample level.

Chapter 3 provides an overview of the main modeling frameworks that have been in-

troduced for modeling IAT data. These frameworks can be distinguished according to the

type of responses used for the estimation of the parameters. The Quad model (Conrey et

al., 2005) and the ReAL model (Meissner & Rothermund, 2013) are based on accuracy re-

sponses, while the Diffusion model (Klauer et al., 2007) and the Discrimination-Association

model (Stefanutti et al., 2013) account for both the accuracy and time responses. Regardless

of the type of responses they consider, these models are able to disentangle the most auto-
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matic processes from the most controlled ones intervening during the performance at the IAT.

A common finding of these models is that the automatic associations are just one of the pos-

sible processes captured by the IAT. Other controlled processes, such as the recoding of the

stimuli (ReAL, Diffusion Model) or the suppression of the automatically activated responses

(Quad model), play an important role as well. Despite their usefulness for the disentangle-

ment of the cognitive processes underlying the IAT effect, none of these models provides a

detailed information at the level of the individual stimulus. Given the importance of the stim-

uli selection for a correct functioning of the IAT (e.g., Bluemke & Friese, 2006), the need

for models able to provide detailed information at the stimulus level is crucial. Moreover,

all these models neglect the variability due to the fully-crossed structure of the IAT data. A

Rasch modeling of the IAT data provides fine-grained information on the functioning of the

stimuli, allowing for the identification of the stimuli that give the highest contribution to the

IAT effect. This information can be used for delving deeper on the automatic associations

driving the IAT effect, and hence to obtain a better understanding of the measure itself. How-

ever, the applications of the Rasch model to the IAT data are not save from criticisms. The

most outstanding one is related to the discretization of the time responses needed for the ap-

plication of this model, which might cause a large loss of information. Moreover, also this

approach does not account for the variability in the IAT data.

An introduction to the Rasch and log-normal models is provided in the first section of

Chapter 4. The limitations of the application of the Rasch model to complex data structures

such as that of the IAT and its similarities with the structure of Generalized Linear (Mixed-

Effects) Models are illustrated. Given that the Rasch model is equivalent to a Generalized

Linear Model (GLM) with a logit link function (i.e., the natural link function for binomial

accuracy responses), the model matrix of the GLM can be extended to include the random

effects able to address the sampling variability of the random factors in the IAT data. As

such, the Rasch model estimates from IAT data can be obtained by employing Generalized

Linear Mixed-Effects Models (GLMMs). The use of GLMMs for estimating the Rasch model

parameters accounts for the variability generating local dependence at the trial level, hence

resulting in more reliable estimates. By considering the normal density distribution of the
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log-time responses, the log-normal model allows for obtaining a parametrization of the data

analogous to that provided by the Rasch model, while avoiding the discretization of the time

responses needed for the application of the Rasch Model. The estimates of the log-normal

model parameters can be obtained by applying Linear Mixed-Effects Models (LMMs) to

the log-transformed time responses of the IAT. The estimates of the Rasch and log-normal

models do not directly result from the application of the (G)LMMs to the accuracy or log-

time responses, but are obtained by adding the marginal modes of each level of the random

effects (Best Linear Unbiased Predictors, BLUP) to the estimates of the fixed effects. The

specification of models with different random structures allows for obtaining information at

different levels of granularity on either the respondents or the stimuli.

The second section of Chapter 4 presents the specification of models with different ran-

dom structures for a meaningful Rasch and log-normal analysis of the IAT data. Three models

for accuracy responses and three models for log-time responses are specified for obtaining

the estimates of the Rasch and log-normal models, respectively. Besides the assumption on

the distribution of the error term, the random structures of the accuracy and log-time models

are identical. The error term for the accuracy responses is modeled by assuming a logistic

distribution, while the one for the log-time responses is supposed to follow a normal distri-

bution. The random structures of the models are ordered according to their complexity, with

the first one being the simplest one (i.e., Null model). The second and third models have the

same degree of complexity. They differ from each other according to the random factor on

which they allow for the multidimensionality of the error variance, either the stimuli or the

respondents.

Two empirical applications of the models presented in the second section of Chapter 4

are illustrated in Chapter 5. The first application was aimed at investigating the validity

of the proposed models for the analysis of the IAT data. To pursue this aim, a Race IAT

was employed and the relationship between the estimates obtained from the Rasch and log-

normal models and the typical IAT scoring was investigated. By obtaining condition–specific

stimulus estimates of the Rasch model, it was possible to investigate the contribution given

by each stimulus to the IAT effect, resulting in a better understanding of the measure itself
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and in the identification of malfunctioning stimuli that should be replaced or removed. The

condition–specific respondent estimates of the log-normal model, combined with the overall

respondent estimates of the Rasch model, brought further evidence in favor of the speed-

accuracy trade-off and allowed for a better understanding of the IAT measure as expressed

by the typical scoring algorithm.

The second application was aimed at understanding whether the estimates provided by

the proposed modeling framework do result in a better inference of the implicit construct

under investigation. As such, the model estimates are expected to lead to a better prediction

of behavioral outcomes than the typical scoring procedure of the IAT. The second application

was also aimed at testing the usefulness of the condition–specific stimulus estimates. If the

stimulus estimates truly allow for pinpointing the most informative stimuli, as well as the

least informative ones, a higher amount of information should be obtained by selecting only

the former ones to create smaller but highly informative data sets. The D score computed on

the reduced data set should be more reliable than the one computed on the entire data set,

and potentially results in a better prediction of behavioral outcomes. An IAT for the implicit

assessment of the preference for dark or milk chocolate (Chocolate IAT) was employed for

pursuing these aims. The Rasch and log-normal model estimates resulted in a better measure

of the implicit preference, which in turn led to a better prediction of the behavioral outcome

than the one provided by the typical scoring procedure. Moreover, the information on the

contribution of each stimulus to the IAT effect allowed for reducing the across-trial variability

by creating smaller data sets with only the most informative stimuli. The D scores computed

on the reduced data set resulted in a better prediction than those computed on the entire

data set, further highlighting the sensitivity of the typical scoring measures to the across-trial

variability in the IAT data.

Despite the approach presented in Chapter 2 provides a fairer comparison between the

predictive abilities of the IAT and the SC-IAT, the post-hoc separation of measures originally

administered together represents its main fallacy. When multiple measures are administered

concurrently in a within-subjects experimental design, each of them comes with its peculiar

data structure and related variability. Additionally, other sources of variability have to be ex-
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pected, such as the within–respondents between–measures variability and the within–stimuli

between–measures variability, if the same sample of stimuli is used across measures. There-

fore, sources of variability other the ones within each measure should be taken into account

to obtain reliable estimates. Chapter 6 presents a comprehensive modeling approach for mul-

tiple implicit measures administered together. The chapter firstly introduces the use of the

models presented in Chapter 4 for the separate modeling of the IAT and the SC-IAT. This

was done for mainly two reasons. Firstly, to investigate the soundness of the proposed ap-

proach for modeling measures other than the IAT. Secondly, to investigate whether and how

the model estimates change when the within–respondents between–measures variability and

the within–stimuli between–measures variability are not accounted for. Despite this approach

overlooks the within–respondents between–measures variability, it should result in more re-

liable estimates than the D score. However, the estimates from the application of distinct

models are not directly comparable between each other. Consequently, the performances of

the respondents between implicit measures cannot be compared, and the stimulus estimates

might include uncontrolled variance leading to meaningless (and potentially puzzling) re-

sults. The extension of the models to account for other sources of variability, hence allowing

for the inclusion of multiple implicit measures in the same model, is illustrated. In these

models, the focus is on the respondents, hence the multidimensionality of the error variance

is allowed only at the respondent level.

Chapter 7 presents an empirical application of the modeling approach presented in Chap-

ter 6. Data are the same as those in Chapter 2, hence including one IAT and two SC-IATs.

The predictive abilities of the model estimates and the typical scoring of each measure were

compared. Both the single measure modeling and the comprehensive approach resulted in

condition–specific respondent estimates, although the estimates obtained with the former ap-

proach are not directly comparable. Furthermore, just by accounting for the method specific

variance of each implicit measure is possible to obtain more reliable estimates than the D

score, as it can be inferred from their better prediction of the behavioral outcome. By analyz-

ing the data from each implicit measure separately, it is not possible to rule out whether the

different functioning of the stimuli between measures is ascribable to an actual different func-
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tioning or to uncontrolled error variance. The comprehensive modeling allows for directly

comparing the estimates at both the respondent and stimulus levels. Consequently, a better

understating of the functioning of each implicit measure is obtained, and more meaningful

inferences can be made. Besides resulting in a better prediction of the behavioral outcome

than the typical D scores, the estimates obtained from the single modeling of implicit mea-

sures and from their comprehensive modeling allowed for highlighting the contribution of

one of the SC-IATs to the prediction of the behavior. The contribution of the SC-IAT to the

prediction of the behavior was completely lost when the typical scoring methods were used.

Finally, Chapter 8 summarizes the findings of the studies reported throughout the thesis,

and draws general conclusions based on the evidence reported in all studies. The limitations

of the studies are addressed and possible future directions are outlined.
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Chapter 1

Psychological implicit assessment

In this introductory chapter, a brief definition of automatic and controlled processes is

provided, along with a summary of the main theoretical frameworks concerning the distinc-

tion of these processes.

The Implicit Association Test (IAT; Greenwald et al., 1998) and an overview of its use

from the year of its first introduction (1998) to current days are then presented. The main

fields of application of the IAT are illustrated as well. The issues related to the comparative

measure that is gathered from the IAT is addressed by presenting an implicit measure able

to provide an absolute evaluation towards one target object, namely the Single Category Im-

plicit Association Test (SC-IAT; Karpinski & Steinman, 2006). The chapter ends with the

illustration of the fully-crossed structure that characterizes the IAT and SC-IAT data.

1.1 Automatic and controlled processes

Throughout the past decades, social sciences have seen a growing interest in the possibility of

assessing people’s attitudes, preferences, opinions, personality traits and other psychological

constructs by inferring them from respondents’ performance to computerized categorization

tasks (i.e., implicit measures). Usually, implicit measures are tasks in which respondents are

called to sort stimuli representing different categories. The stimuli are specifically selected to

trigger the activation of implicit processes, which are defined as processes operating outside

of people’s awareness but that can still affect behaviors, decisions, and social judgments

(Greenwald & Banaji, 1995; Greenwald & Lai, 2020). The use of response times for inferring

mental processes activated by a stimulus has a long tradition in psychology (see Greenwald

1
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& Lai, 2020). The implicit investigation of psychological and social constructs has been now

widely recognized and it earned the label of “implicit social cognition” (Greenwald & Banaji,

1995).

According to dual process theories (e.g. Devine, 1989; Fazio & Olson, 2003), two dis-

tinct but mutually reliant processes are involved in people’s social behaviors and attitudes.

This implies that implicit and explicit processes are different manifestations deriving from

the same single–representation. These processes usually happen simultaneously and involve

automatic and controlled components. Differently from implicit processes, which do not re-

quire the availability of cognitive resources for being activated, controlled processes require

a cognitive effort, resulting from the interaction between the person’s willingness to engage

in that process and the availability of cognitive resources and time for engaging in the process

(Fazio & Olson, 2003). Moreover, controlled processes allow one to compare new informa-

tion with previous experience and to make inferences on the environment in which they occur,

making them more sensitive to social judgment and social desirability (e.g., Greenwald et al.,

2009).

Controlled processes are usually assessed by means of the so-called direct measures, such

as self-report scales. Consistently with the definition of controlled processes reported so far,

direct measures assess the construct under investigation by directly giving an instruction to

report it, presuming a certain degree of awareness of the construct itself (Greenwald & Lai,

2020). Conversely, automatic processes are assessed with measures that assume no intro-

spective awareness of the construct itself, and, most importantly, they measure the construct

of interest without directly asking to report it (Greenwald & Lai, 2020).

A common trend for concurrently assessing controlled and automatic processes underly-

ing psychological constructs is to administer a direct measure for capturing the former ones

and an indirect measure for capturing the latter ones (Brownstein et al., 2019).

The controlled components of psychological constructs assessed by direct measures have

been found to be highly correlated with the automatic components of the same psychological

constructs assessed by indirect measures (e.g., Nosek, 2007). However, this correlation is re-

duced when the psychological constructs under investigation involve socially sensitive topics,
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such as racial prejudice (Greenwald et al., 2009; Nosek, 2007). Another evidence pointing

towards a dissociation between controlled and implicit processes comes from the type of

behaviors predicted by these processes. Controlled processes assessed by direct measures

have been found to be good predictors of deliberate behaviors (i.e., behaviors on which peo-

ple have a certain degree of control), such as brand choice or food preference. Conversely,

non-deliberate behaviors (i.e., spontaneous behaviors on which people do not have a con-

trol), such as nonverbal communication and social distance in the interaction with members

of stigmatized groups (e.g., Dovidio et al., 2002) are best predicted by implicit processes

assessed with indirect measures (e.g., Meissner et al., 2019; Perugini, 2005; Wilson et al.,

2000). Different hypotheses have been formulated for explaining the worse predictive ability

of implicit measures in respect to deliberate behavioral choices. For instance, Greenwald and

Banaji (2017) claim that the automatic associations assessed by indirect measures can trigger

deliberate thoughts about the associations themselves but they are unlike to predict behav-

iors. Conversely, decisions and choices might be more ascribable to the deliberate thoughts

triggered by the automatic associations. Meissner et al. (2019) ascribe the scarce predictive

ability of implicit measures to the type of implicit processes that these measures tap. Indeed,

by the way in which they are designed, indirect measures tap the liking component towards

the target objects, that is how much an object is positively or negatively evaluated. Behaviors

and choices are rather guided by a wanting component, that is how much a target object is

desired.

The apparent dissociation between automatic and controlled processes is still not solved,

despite different theoretical frameworks having tried to provide a conceptualization of these

processes able to explain the peculiar patterns of associations with external criteria (Perugini,

2005).

According to dual process theories, it should not be surprising to observe such differ-

ent patterns between controlled and automatic processes, and their predictive ability might

change according to each and every kind of behaviors. Despite the two manifestations of the

same attitude should provide a distinctive and unique prediction of the behavior, there might

be cases in which one overrides the other in predicting the behavioral outcome. Moreover,



4 CHAPTER 1. PSYCHOLOGICAL IMPLICIT ASSESSMENT

controlled and automatic processes can be affected differently by other variables which are

not directly accounted for by either the direct or indirect assessment, such as social desir-

ability (direct measures) or a moment of distraction (indirect measures). Besides the external

variables that can differently affect the direct and indirect assessment, the low correlation

between the two measures of the same psychological construct can be due to the discriminant

validity between two different type of measures, one based on introspection and on explicit

and controlled responses, the other one based on response times and automatic responses.

Alternative explanations posit the coexistence of both explicit and implicit attitudes to-

wards the same attitude objects (Dual Attitudes Model; Wilson et al., 2000). The combination

between the degree of awareness of an implicit attitude and the extent to which motivation

and cognitive resources are needed for overcoming the implicit attitude in favor of the explicit

one generates different types of dual attitudes, namely repression, independent systems, mo-

tivated overriding, and automatic overriding. The first dual attitude, repression, requires the

capacity of the explicit attitude to override the implicit one, which is kept outside of aware-

ness. The dual attitude independent systems requires the presence of two attitudes towards

the same object, one within awareness (explicit), and the other one outside of awareness (im-

plicit). However, in this case, both systems develop evaluations, and they influence different

type of responses (i.e., explicit and implicit responses). In the dual attitudes repression and

independent systems, the implicit attitude does not reach awareness. In motivated overriding,

people are completely aware of the existence of the implicit attitude, but they are motivated to

override it because they view it as illegitimate or they are ashamed of it. Clearly, this process

requires the availability of cognitive resources for the explicit attitude to override the implicit

one. The difference between the dual attitudes motivated overriding and automatic overrid-

ing lies in the automaticity of the overriding process. In the former case, it is a motivated and

aware process, while in the latter case, it occurs outside of people’s awareness.

Two main assumptions underlie all dual attitudes. First, once an implicit attitude is formed

from previous experience, it does not require for cognitive resources to be activated, and it

is activated every time the attitude object is encountered. Second, the explicit attitudes do

require cognitive capacity and motivation to be retrieved. Both assumptions are in line with
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the conceptualizations of implicit and explicit processes presented so far. The independence

assumed between implicit and explicit attitudes towards the same attitudes object allows for

speculating a double dissociation pattern in the prediction of behaviors. It follows that im-

plicit attitudes can solely predict behaviors that are not under people’s awareness and control,

while explicit attitudes are directly related to behavioral responses under people’s awareness

and control.

1.2 The Implicit Association Test

Several implicit measures have been introduced for tapping the implicit component of atti-

tudes, preferences, self-esteem, and other psychological constructs, such as the IAT (Greenwald

et al., 1998), the Go/No-go Association Task (GNAT; Nosek & Banaji, 2001), and the Sort-

ing Paired Features task (SPF; Bar-Anan et al., 2009), just to name a few. Nonetheless, the

IAT is the implicit measure that presents the best psychometric properties when compared

to other commonly employed implicit measures (Bar-Anan & Nosek, 2014). Moreover, by

appropriately changing the labels of the attitude objects and leaving its structure unaltered,

the IAT is easily adaptable for the investigation of a broad range of topics (Zogmaister &

Castelli, 2006), such as stereotypes, attitudes, and self-concept. This characteristic of the

IAT fostered its use in many different fields of applications, including law, criminal justice,

education, marketing, and business (e.g. Epifania, Robusto, & Anselmi, 2020b; Greenwald

et al., 2009; Greenwald & Lai, 2020).

The IAT measures the strength of the associations between concepts by considering the

speed and accuracy with which prototypical exemplars of two objects categories (e.g., Coke

and Pepsi images in a Coke-Pepsi IAT) and of two evaluative dimensions (i.e., Good and Bad

attributes) are sorted in the category to which they belong by means of two response keys.

The usual structure of an IAT (illustrated in Table 1.1) is composed of 7 blocks. The

labels of the four categories, both the evaluative ones and the target objects ones, are fixed at

the top left and right corners of the computer screen. The stimuli are presented sequentially

at the center of the screen.
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Table 1.1
Coke-Pepsi IAT structure (adapted from Greenwald et al., 2003).

Block Function Left Response key Right Response key

B1 Pure practice Coke Pepsi

B2 Pure practice Good words Bad words

B3 Associative practice Good & Coke Bad & Pepsi

B4 Associative test Good & Coke Bad & Pepsi

B5 Pure practice Pepsi Coke

B6 Associative practice Good & Pepsi Bad & Coke

B7 Associative test Good & Pepsi Bad & Coke

Note: The order of presentation of Blocks B3 and B4 and blocks B6 and B7 are
counterbalanced across respondents.

The first two blocks are pure practice blocks in which respondents have to sort the exem-

plars belonging to either the object categories (Block B1) or the exemplars belonging to the

evaluative dimensions (Block B2). These blocks have the purpose of letting the respondents

familiarize with the stimuli and the task. Blocks B3 and B4 from the first associative condi-

tion. In these blocks, the object category Coke shares the response key with Good attributes,

while the object category Pepsi shares the response key with Bad attributes (Coke/Good-

Pepsi/Bad condition, CGPB). In Block B5, the labels of the object categories switch their

positions on the computer screen. This block is a practice block that lets respondents fa-

miliarize with the new locations of the labels. Blocks B6 and B7 constitute the contrasting

associative condition, in which the categorization task is reversed. In these blocks, Pepsi

and Good exemplars are sorted with the same response key, while Coke and Bad exemplars

are sorted with the other response key (Pepsi/Good-Coke/Bad condition, PGCB). The as-

sumption underlying the IAT functioning is that it is easier to sort together the exemplars of

two categories when these categories are strongly associated with each other than when they

are not. Consequently, respondents are supposed to perform better, in terms of faster time
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responses and higher accuracy, in the condition consistent with their automatically activated

association(s) than in the opposite one. The so-called IAT effect results from the difference in

respondents’ performance between the two conditions, and it is usually interpreted by means

of the D score (Greenwald et al., 2003, see Section 2.1).

The two associative conditions of the Coke-Pepsi IAT in Table 1.1 are depicted in Figure

1.1.

(a) Coke-Good/Pepsi-Bad condition (b) Pepsi-Good/Coke-Bad condition

Figure 1.1: Associative conditions of a Coke-Pepsi IAT.

During the administration of the IAT, respondents might be given feedback of their per-

formance. If the IAT administration includes the feedback presentation, a red “X” appears

every time an incorrect response is registered (i.e., the stimulus is assigned to a category other

than its belonging one). To proceed with the experiment, the respondents have to assign the

stimulus to the category to which it belongs. When the IAT does not include feedback in the

administration, respondents are not notified when they commit errors, and they keep going

with the experiment.

1.2.1 Fields of application

A recent literature review (Epifania, Robusto, & Anselmi, 2020b) showed an increased use of

the IAT in wider and more varied fields of application. Since the year of its first introduction

(1998), the IAT has been used in more than 1,400 studies, investigating different topics. By

reading the abstracts of the 1,418 papers citing and using the IAT (i.e., number of citations

from 1998 to October 25th 2019, date of the search on Scopus database), it was possible to

identify 6 main fields of application of the IAT: Social psychology (i.e., studies aimed at
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the investigation of attitudes, their creations and change, regardless of the specific context,

outgroup , or sample, n = 513), Clinical and personality psychology (i.e., studies aimed at

the assessment of personality traits, both functional and dysfunctional, and mood disorders,

n = 290), Addiction (i.e., studies on addiction, regardless of the substance, and the sample,

n = 113) , Food research (i.e., studies on food perception and food preference, n = 43),

Marketing research (i.e., studies on brand perception, decision making and brand preference,

n =34), and Other applications (i.e., studies on all the topics not exhausted by the other

macro-areas, n = 425). Figure 1.2 depicts the trend lines of each field of application from

1998 to 2019. The dashed line in Figure 1.2 represents the average trend of the IAT use across
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Figure 1.2: Trend lines of each field of application of the IAT throughout from 1998 to 2019.

the fields of applications, pointing at a constant and on-going growth in IAT use throughout

the years.

The trend lines of the macro-areas Social psychology and Other appeared always above

the mean trend line, while the trend line of the macro-area Clinical and personality psychol-

ogy is the most inconsistent one throughout the years. The trend lines of the macro-areas
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Food and Marketing are similar between each other, and they both point at an increased use

of the IAT in these fields during the past few years.

Besides the general fields of applications of the IAT, it is interesting to delve deeper on

the specific topics for which the IAT was employed (depicted in Figure 1.3).

Figure 1.3: Word cloud of the fields of application of the IAT. The bigger the word font, the
more common the use of the IAT for the investigation of that specific topic.

Not surprisingly, the IAT was mostly used for investigating implicit stereotypes and at-

titudes, such as implicit racial prejudice, gender stereotypes, attitudes towards obese people

and other social groups (i.e., psychiatric patients and people with disabilities).

The IAT has also been used for investigating addiction, unhealthy behaviors (i.e., smok-

ing, alcohol consumption), personality traits, and self-perception.

The following paragraphs outline a brief summary of the IAT use in each field of applica-

tion. The complete report of the fields of application of the IAT, along with the samples used

in the studies, can be found in Epifania, Robusto, and Anselmi (2020b).

The IAT in the macro-area Social psychology. The resistance of the IAT to self-presentation

strategies (e.g., Greenwald et al., 2009) made it particularly appealing for investigating so-

cially sensitive topics, such as racial prejudice and, more generally, stereotypes and attitudes
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towards different out-groups. Studies on this topic are followed by studies focused on gender

stereotypes, and on the investigation of illness-related attitudes. In this thesis, illness-related

attitudes is a label used for indicating attitudes towards people with either mental or physical

disabilities, psychiatric patients, people with HIV, cancer patients and patients in general, and

suicide survivals.

Despite with lower frequency, the IAT is also used to assess attitudes towards people

professing different religions, towards non-native English speakers, and bias towards people

with low incomes. Papers composed of multiple studies in which attitudes towards multiple

out-groups (e.g., out-group prejudice and weight bias) were concurrently investigated were

common. The IAT was also used to investigate topics related to the Stereotype Content Model

(SCM; Fiske et al., 2002), including infra-humanization, and to investigate the effectiveness

of experimental manipulation to change/induce attitudes, even towards non-real groups.

The IAT in the macro-ares Clinical and personality psychology. The IAT was mostly

used for the implicit assessment of self-esteem. Personality traits (e.g., Big Five personality

traits), anxiety, and personality and mood disorders according to Axes I and II of the Diag-

nostic and Statistical Manual of Mental Disorders (DSM) definition were fairly investigated

as well. The IAT was also commonly used for the implicit assessment of suicidal tendencies,

aggressiveness, emotions, and clinical sex behavior (e.g., pedophilia).

The IAT in the macro-area Addiction. The vast majority of studies using the IAT in this

field were focused on the investigation of alcohol addiction, followed by studies on nicotine

and smoking addiction. The concurrent investigation of multiple addictions, such as drinking

with smoking or drinking with gambling, was quite uncommon.

The IAT in the macro-area Food research. The IAT was mainly used to investigate the

preference for different kinds of food, the preference for healthy over unhealthy food, or food

perception in general. The IAT was also employed for investigating attitudes towards dieting.

Less common topics were food craving, food self–control, and the effect of the time of day



1.3. THE SINGLE-CATEGORY IMPLICIT ASSOCIATION TEST 11

on food preference.

The IAT in the macro-area Marketing. Marketing research is one of the most recent fields

of applications of the IAT. Most of the studies are focused on the implicit evaluation of the

preference between different brands. Additionally, the IAT has been employed for studying

the processes driving the decision to purchase products, and the role of products labels and

packaging in influencing the purchase of that specific product.

The IAT in the macro-area Other. The studies included in this macro-ares cover a broad

and extensive range of topics, from gender perception of odds and even numbers (Wilkie

& Bodenhausen, 2015) to work related stress (Klein et al., 2012) and romantic attachment

(Zayas & Shoda, 2005). Studies aimed at the validation of the IAT are included as well, and

they compose the vast majority of studies in this field of applications. They are followed by

studies on human perception and studies on methodology. The distinction between measure

validation papers and methodology papers is quite subtle. Measure validation studies include

papers aimed at the validation of the IAT procedure (e.g., Greenwald et al., 1998), its score

(e.g., Greenwald et al., 2003), and the factors that may affect the IAT effect (e.g., Bluemke

& Friese, 2006). Methodology papers includes studies in which existing formal models were

used for modeling IAT data, such as the application of the Many-Facet Rasch Measurement

Model (Linacre, 1989) in Anselmi et al. (2011) or the application of the Diffusion Model

(Ratcliff, 1978) in Klauer et al. (2007). Studies aimed at the validation of ad-hoc models for

IAT data, such as the Quad Model (Conrey et al., 2005) or the Discrimination-Association

Model (Stefanutti et al., 2013) are included under the label methodology as well.

1.3 The Single-Category Implicit Association Test

The IAT has vastly proven its effectiveness and usefulness in providing a relative measure of

the preference towards one object category compared with a contrasted one. However, the

measure obtained from the IAT presents two main shortcomings. First, the relative measure
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provided by the IAT is not able to disentangle whether the performance is driven by a positive

evaluation towards one of the objects, a negative evaluation towards the opposite one, or a

combination of the two evaluations. Sticking with the Coke-Pepsi IAT example in Section

1.2, faster responses in the Coke/Good-Pepsi/Bad associative condition might be due to ei-

ther a preference for Coke (faster responses in sorting Coke images and Good attributes with

the same response key), a dislike for Pepsi (faster responses in sorting Pepsi images and Bad

attributes with the same response key), or even a combination of the two attitudes. One could

try to decompose the IAT effect by computing separate scores for the trials in which Good at-

tributes and Coke (Pepsi) images are associated and in which Bad attributes and Coke (Pepsi)

images are associated. Even by doing so, it is not possible to obtain an absolute measure of

the preference towards one of the two beverages (Nosek et al., 2005). The IAT is based on a

comparative task and, as such, it can only result in a comparative measure. Consequently, the

IAT is not the most appropriate measure when the focus in on the assessment of the absolute

positive or negative evaluation of a single object. Consider the implicit assessment of self-

esteem. In this instance, the interest would be on how much a person values himself/herself.

However, studies that employed the IAT for implicitly investigating this construct contrasted

the category Self or Me with a generic category, like Other (e.g., Hiller et al., 2017) or Not

Me (e.g., Fatfouta & Schröder-Abé, 2018). Consequently, the measure resulted in an indirect

evaluation of how much a person valued himself/herself in comparison to others, and not in

how much a person valued himself/herself (Karpinski & Steinman, 2006).

Second, since the IAT effect depends on the relative evaluation between the two cate-

gories, the choice of the contrasted category is of the uttermost importance. In some cases,

a clear contrasted category is not available, and the researcher has to make arbitrary choices.

Sticking with the Coke-Pepsi IAT example in Section 1.2, the relative attitude towards Coke

strongly depends on the attitude towards Pepsi (and vice-versa). For instance, a respondent

indifferent to Coke but with a very strong dislike for Pepsi might result in a strong positive

IAT effect. However, this effect would be mostly due to a dislike for Pepsi and not to a true

positive evaluation of Coke. By replacing Pepsi with another soft drink, the resulting IAT

effect for the very same respondent might change, and even result in a negative score.
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Different alternatives have been introduced to overcome the issue of the relativeness of

the IAT measure, such as the SC-IAT (Karpinski & Steinman, 2006). The SC-IAT results

from a slight modification of the IAT procedure. It is aimed at assessing the strength of

associations between concepts by considering the speed and accuracy with which different

stimuli are sorted in their reference categories. The assumption that underlies the functioning

of the SC-IAT is the same as that underlying the functioning of the IAT, namely, that it is

easier to sort together exemplars of two categories when they are strongly associated with

each other than when they are not. However, differently from the IAT, the exemplars of

only one object category (e.g., Coke in a Coke SC-IAT), along with the exemplars of two

evaluative dimensions, are presented. The usual structure of a SC-IAT is illustrated in Table

1.2. The SC-IAT is usually composed of 4 blocks. In the first two Blocks (B1 and B2), the

Table 1.2
Coke SC-IAT structure (adapted from Karpinski & Steinman, 2006).

Block Function Left Response key Right Response key

B1 Associative practice Good & Coke Bad

B2 Associative Test Good & Coke Bad

B3 Associative practice Good Bad & Coke

B4 Associative Test Good Bad & Coke

Note: The order of presentation of Blocks B1 and B2 and Blocks B3 and B4 are
counterbalanced across respondents.

target object Coke and Good attributes share the same response key, while Bad attributes are

sorted with the opposite response key (Coke/Good-Bad condition, CG). In the last two blocks

(B3 and B4), target object Coke is sorted with the same response key as Bad attributes, while

Good words are sorted with the opposite response key (Coke/Bad-Good condition, CB).

Blocks B1 and B3 are associative practice blocks, while Blocks B2 and B4 are the actual

critical blocks that constitute the two associative conditions.

The two conditions of the Coke SC-IAT described in Table 1.2 are depicted in Figure 1.4.



14 CHAPTER 1. PSYCHOLOGICAL IMPLICIT ASSESSMENT

(a) Coke-Good/Bad condition (b) Coke-Bad/Good condition

Figure 1.4: Associative conditions of a Coke SC-IAT.

The SC-IAT administration usually includes a response time window (rtw) at 1,500 ms,

after which the stimulus disappears and a warning message (e.g., “Respond more quickly!”)

is given to the respondent. Every correct response is signaled by a green “O”, while every

incorrect response is signaled by a red “X”. Differently from the IAT, respondents do not

have to correct their incorrect responses to go on with the experiment.

The rtw and feedback for every response differentiate the SC-IAT from the Single Tar-

get IAT (ST-IAT; Wigboldus et al., 2004). Nonetheless, the names (and procedures) of the

two measures are used interchangeably (e.g., Bar-Anan & Nosek, 2014). The SC-IAT effect

results from the difference in respondents’ performance between the two contrasting condi-

tions, and it is usually expressed by a modification of the IAT D score algorithm (Karpinski

& Steinman, 2006, see Section 2.2).

1.4 The fully-crossed design of implicit measures

Suppose that two respondents, Lara and Francesco, are presented with the Coke-Pepsi IAT in

Section 1.2.

On average, Lara might be more accurate (or faster) than Francesco. The difference in the

overall performances of Lara and Francesco is ascribable to their individual differences and

their characteristics. The between–respondents variability is the expression of the differences

due to these individual characteristics, irrespective of the associative conditions.

The set of exemplars chosen for representing each category presents their own variability
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as well. The Coke logo can be immediately recognized and sorted in its own category, while

an image of an old fashioned can of Coke might be less familiar and hence might need more

time for being recognized and sorted. Similarly, the attribute evil might be immediately

recognized as belonging to the evaluative dimension Bad, while the attribute wicked might

not be immediately recognized as belonging to the evaluative dimension Bad 1. The between–

stimuli variability is the expression of the sampling variability due to stimuli characteristics,

irrespective of the associative conditions.

So far, only the between–respondents variability and the between–stimuli variability have

been considered as the expression of the individual and stimulus differences, respectively.

The effect of the IAT associative condition has not been mentioned yet. Nevertheless, the

main object of investigation in IAT studies is the variation in the performance of the respon-

dents between the associative conditions.

The individual differences of the respondents might be exacerbated or diminished by the

effect of the associative condition. Recall that Lara showed a better overall performance than

Francesco. However, the difference in their performances might be attenuated in the Coke-

Good/Pepsi-Bad condition, potentially due to several reasons. For instance, Lara might keep

her performance unaltered because she is neither fond of Coke nor disgusted by Pepsi, while

Francesco might show a better performance because he particularly likes Coke over Pepsi. In

the opposite condition, the difference between the performances of Lara and Francesco might

be exacerbated. Lara might still keep her performance unaltered, while Francesco might

struggle in associating his favorite soda with negative attributes. The within–respondents

between–conditions variability is hence the expression of the variability in the performance

of the respondents ascribable to the effect of the associative condition. Usually, to investigate

whether the associative condition had an effect on the performance of the respondents, a by-

participant approach is undertaken (i.e., a score for each respondent is obtained by taking

1The attribute evil is the English translation of the Italian word cattivo. The attribute wicked is the English
translation of the Italian word malvagio. The spread Index (which varies from 0 to 1, where 1 indicates a high
spread) for the former one is 0.85, while for the latter is 0.36 (Bambini & Trevisan, 2012), indicating that the
word cattivo (evil) is more spread and used than the word malvagio (wicked). As such, the meaning of the
former word might be more familiar than the meaning of the latter one (in Italian).
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the difference between the across-trial average response time in each condition; Judd et al.,

2012).

There are no reasons to suppose that stimuli are immune to the effect of the associative

condition. Some of the stimuli might be more easily sorted in one associative condition than

the other for a number of reasons, including the specific attitudes of the respondents. The

within–stimuli between–conditions variability indicates whether the functioning of the stim-

uli changes according to the associative condition in which they are presented. By exploiting

this information, it is possible to obtain a measure of the contribution given by each stimulus

to the IAT effect. The more (less) a stimulus functioning changes between the conditions, the

higher (lower) its contribution to the IAT effect. Often, to investigate the effect of an experi-

mental variable on the functioning of the stimuli a by-stimulus approach is undertaken (i.e., a

score for each stimulus is obtained by taking the difference between the across-respondents

average response time in each condition; Judd et al., 2012).

One source of variability (i.e., the variability due to the reactions of each respondent to

each stimulus) has not been mentioned yet. Lara is a better respondent than Francesco, but she

also does not have a particular preference for any of the sodas. As such, Lara might generally

react in the same way to each of the stimuli representing the two brand of sodas. On the

other hand, Francesco has a strong preference for Coke. As such, he might be more able than

Lara in recognizing even the above-mentioned old-fashioned can of Coke. Consequently,

he would have a better performance than Lara on this specific stimulus. The interaction

between the respondent and stimulus variabilities is the expression of the interaction between

the respondent and stimulus characteristics.

This practical example provided a clear overview of how the sources of variability in the

IAT data are generated, and it can be used as a starting point for further illustrating the IAT

data structure and its sources of random variability.

In the IAT2, the respondents are presented multiple times with the stimuli nested in two

levels of two independent variables, namely the evaluative dimensions (Good vs Bad) and

the target objects (e.g., Coke vs Pepsi). In a multilevel modeling perspective, the respondents

2The SC-IAT presents the same data structure, although one of the target categories is dropped.
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and the stimuli can be considered at the same level.

The associative conditions constitutes another independent variable, composed of two

levels (e.g., the CGPB and PGCB associative conditions of the Coke-Pepsi IAT). Being at a

higher level, this variable includes both the respondents and the stimuli, and its effect on the

performance of the respondents is usually the main focus of investigation in IAT studies.

The stimuli representing each of the categories are presented multiple times to the respon-

dents both within and between the associative conditions. As such, the stimuli are crossed

with both the respondents and the associative condition. Besides being crossed with each

other, the respondents and the stimuli are both crossed with the associative conditions (fully-

crossed design; Westfall et al., 2014).

The responses xps of three participants pp to three stimuli ss (i.e., , , ) in the

two IAT associative conditions c are represented in Table 1.3 to exemplify the fully-crossed

structure characterizing the measure. Each cell of Table 1.3 contains the unique combination

Table 1.3
Fully-crossed design.

Condition A Condition B

p1

p2

p3

Note: p: Respondents.

respondent × stimulus for every repetition of the stimulus in each associative condition (xpsc,

the response to each trial of the IAT). The trials of the IAT are at the lowest level of obser-

vation resulting from the crossing between the stimuli, the respondents, and the associative
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conditions. The illustration in Table 1.3 represents how the dependency at the level of the

single observations is generated by the random noise in the data.

Data deriving from a fully-crossed design, such as that of the IAT, should be carefully

analyzed to account for the sources of variability related to the participants, the stimuli, the

associative conditions, and their interactions (Baayen et al., 2008; Barr et al., 2013; Judd et

al., 2017; Westfall et al., 2014; Wolsiefer et al., 2017). These sources of variability generate

dependencies between the observations that violate the assumption of conditional indepen-

dence. This assumption is the basic assumption underlying data analysis in Social sciences,

according to which, once the effect of the variability due to one latent variable is accounted

for, the remaining variability can be explained by means of the experimental factors. Con-

ditional independence is often referred to as local independence as well. The two terms are

used interchangeably throughout the thesis.

Usually, the IAT (or SC-IAT) effect is expressed by an effect size measure obtained by

aggregating the responses across the trials in each associative condition, and dividing these

quantities by the standard deviation computed on the pooled trials of both blocks. These

measures are the so-called D score (Chapter 2; Greenwald et al., 2003; Karpinski & Steinman,

2006) that provide an easy-to-compute and easy-to-interpret measure of the bias assessed by

the implicit measure.

However, the easiness with which the D score is computed and interpreted comes with

drawbacks that cannot be ignored. The computation procedure of the D score implicitly en-

tails that the stimuli are taken as the exhaustive representation of the population of stimuli

(i.e., fixed factors), while the respondents are considered as just one of the possible samples

that can be drawn from a population (i.e., random factors) (Judd et al., 2012). Assuming

that the respondents are random factors (to be treated as random effects) and the stimuli are

fixed factors (to be treated as fixed effects) defines a by-participant analysis. However, taking

the stimuli as fixed factors has important consequences, both theoretically and statistically.

Firstly, all the stimuli are assumed to have the same functioning and the same effect on the ob-

served measure. Moreover, only inferences concerning the population of the respondents are

allowed. As such, the results are generalizable at the respondent level and their replicability
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is bounded to the use of the same exact set of stimuli (Judd et al., 2012). Finally, by aver-

aging across the trials in each condition, the between–stimuli variation is left uncontrolled.

As such, all the information that can be gathered from the stimuli is lost (Wolsiefer et al.,

2017). Moreover, when the unaccounted by-stimulus variation is confounded with the effect

of interest (the effect of the IAT associative conditions), the risk of committing Type I error is

inflated, and any significant difference between the means can be due to the sources of error

variance and not to the experimental effect (Barr et al., 2013; Judd et al., 2012; McCullagh &

Nelder, 1989). Not accounting for the sources of error variance has important consequences

also when the uncontrolled source is orthogonal (i.e., independent) to the effect of interest.

In this case, the un-controlled error variance reduces the power for testing the relevance of

the effect of interest. Consequently, the importance of the experimental manipulation is un-

derestimated (Barr et al., 2013).

Potentially, the between–stimuli variability can be accounted for by performing by-stimulus

analyses (Judd et al., 2012). Differently from the by-participant approach (respondents are

treated as random factors and stimuli as fixed factors by averaging per participant across

stimuli), the by-stimulus approach treats the stimuli as random factors and the participants

as fixed factors by averaging per stimulus across participants. The stimuli are hence taken

to be just one of the possible sets of stimuli that can be drawn from a population of stimuli.

Clearly, the same pitfalls highlighted for the by-participant approach apply for this instance,

but reversed. Not considering the between–participants variability affects the computation of

the mean score for each stimulus and the results of the statistical tests that are performed.

However, the by-stimulus analyses allow for the generalization of the results at the stimulus

level, and inferences can be made on the population from which the stimuli are drawn. This

makes the results replicable with other sets of stimuli drawn from the same population, but

only if they are administered to the same sample of respondents (Judd et al., 2012).

As an attempt to overcome the replicability and generalizability issues concerning either

the by-participant approach or the by-stimulus one, Raaijmakers et al. (1999) suggested to

report the results obtained with both the by-participant and the by-stimulus analyses. The

results are accepted as significant only if both the analyses yield significant results. The
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underlying logic appears to be quite straightforward. Given that the by-participant analysis

allows for generalizing to other populations of respondents (but only if the same stimuli

are employed) and the by-stimulus analysis allows for generalizing to others population of

stimuli (but only if the same sample of respondents is used), if they are both significant it is

possible to generalize across both of them (i.e., to new samples of respondents and to new

samples of stimuli concurrently). Quite blatantly, this approach cannot do what it claims to

do (Raaijmakers et al., 1999; Raaijmakers, 2003). The by-participant analysis keeps ignoring

the sampling variation of the stimuli and the by-stimulus analysis keeps ignoring the sampling

variation of the respondents. As such, their results are still flawed by uncontrolled sources

of error variance. Besides, this approach presents also theoretical fallacies. The syllogistic

reasoning according to which if both the premises are true (both the by-participant and the

by-stimulus analyses are simultaneously significant and hence the results can be replicated

on different samples of respondents and stimuli, respectively) then also their conjunction

would hold true (i.e., the results can be replicated on new samples of respondents and stimuli

concurrently) appears too bold.

A solution to this impasse is to consider both the respondents and the stimuli as random

factors. By doing so, all the sources of variability at different levels and their potential in-

teractions can be accounted for, resulting in more reliable estimates (Barr et al., 2013; Judd

et al., 2012; Wolsiefer et al., 2017). Moreover, considering the respondents and the stimuli

as random factors implies that both levels are assumed to be drawn from larger populations

(Judd et al., 2012; Wolsiefer et al., 2017). While the implications of treating the respon-

dents as random factors are immediately clear, since they are typically considered as samples

drawn from larger population, the same cannot be said for the stimuli. Treating stimuli as

random factors entails that their functioning can vary for each observational unit. Conse-

quently, they can differently affect the observed measure, and their functioning and relevance

to the observed measure can be directly investigated (Judd et al., 2012). Assuming that all

the employed stimuli in the IAT have the same effect on the outcome measure (i.e., the differ-

ence in the average response time in each associative condition) is an already proved fallacy

(e.g., Bluemke & Friese, 2006; Ellithorpe et al., 2015). As such, both the stimuli and the
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respondents should be considered as random factors for a meaningful and reliable analysis of

the IAT data.

The scores presented in Chapter 2 are all affected by the above mentioned issues, as well

as the formal models for the analysis of the IAT data presented in Chapter 3. The approach

used to address the fully-crossed structure of the IAT is presented in Chapter 4.

1.4.1 More than one implicit measure

It is not uncommon to find studies in which the IAT and the SC-IAT are used concurrently

to obtain both a comparative measure of the attitudes towards one object in comparison to

its opposite, as well as an absolute measure of the positive/negative evaluations towards each

of them (e.g., Bulmer & Izuma, 2018; Epifania, Anselmi, & Robusto, 2020b; Glashouwer et

al., 2013). To pursue this aim, one IAT and two SC-IATs, one for each of the target objects,

are administered to the same respondents. The data of each implicit measure are analyzed

separately by computing individual scores for each measure, which are employed for further

analysis.

When both implicit measures are administered together, the fully-crossed structure repre-

sented in Table 1.3 is repeated for each of them. Each implicit measure comes with its own

sources of variability due to its fully-crossed structure. Moreover, a super-ordinate variable

above the associative condition is added. The new super-ordinate variable is the type of mea-

sure. The associative conditions are hence nested within the specific implicit measure, while

the respondents, besides being crossed with the stimuli and the measure-specific associative

conditions, are also crossed with the implicit measures. Moreover, since the same stimuli

are usually employed to represent the target objects and the evaluative dimensions in all im-

plicit measures, also the stimuli are crossed with the implicit measures. However, not all the

stimuli are crossed with all implicit measures. While the stimuli belonging to the evaluative

dimensions are crossed with all implicit measures (i.e., they are administered in all implicit

measures), the stimuli representing the target objects are presented only according to the spe-

cific measure. Specifically, stimuli representing both target objects are presented in the IAT,
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while only one of the target object categories is presented in each SC-IAT. The variable type

of measure hence introduces a nesting related to the stimuli.

The implicit measure tends to be a variable of interest only in studies aimed at either the

validation of the measure itself or at the investigation of their different functioning. Never-

theless, the by-measure variability that has been introduced needs to be taken into account to

obtain reliable estimates and scores.

If the by-measure variability is left unaccounted, the scores computed on each implicit

measure include the sources of random variation due to both the fully-crossed design of each

measure and the variability that should be expected by the multiple administration of the same

set of stimuli to the same sample of respondents. The approach aimed at overcoming these

issues with a comprehensive modeling of multiple implicit measures is presented in Chapter

6.



Chapter 2

Typical scoring of implicit measures

This chapter presents the scoring procedures for the IAT and the SC-IAT data and the

development of new open source tools for easily scoring the IAT and the SC-IAT.

It is not unusual to find studies in which both the IAT and the SC-IAT are administered

together, and their predictive performances in respect to different criteria are compared. How-

ever, this comparison might be biased by many differences concerning both the administra-

tion and the scoring procedures of the two implicit measures. Therefore, new scoring al-

gorithms are introduced with the aim of reducing the noise due to external factors (i.e., the

scoring procedure itself) in the comparison between implicit measures. The results of an em-

pirical study in which the performance of typical and modified scoring algorithms have been

compared in respect to the prediction of a behavioral outcome are reported.

The core computation of both the IAT and the SC-IAT scores is rather easy. Nonetheless,

the many steps that have to be undertaken for preparing and cleaning the data make it an error-

prone procedure, and compromise the reproducibility of the results. Since there is a lack of

easy-to-use and open source tools for their computation, a Shiny app and an R package have

been developed for the computation of the IAT and the SC-IAT D scores. These tools are

presented at the end of the chapter.

2.1 The IAT D score

Greenwald et al. (2003) introduced different variations of the D score algorithm (Table 2.1),

resulting from the combination of the error correction strategy (“Error replacement” in the

table) and the treatment for fast responses (“Lower tail treatment” in the table).

23
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Table 2.1
Overview of the typical D score algorithms.

Algorithm Error replacement Lower tail treatment

D1 Built-in correction No

D2 Built-in correction Delete trials < 400ms

D3 Mean + 2sd No

D4 Mean + 600ms No

D5 Mean + 2sd Delete trials < 400ms

D6 Mean + 600ms Delete trials < 400ms

Note: For all algorithms trials with a latency > 10,000 ms are discarded. For the algorithms
in which incorrect responses are replaced with the average response time inflated by a fixed
penalty, the average response time is computed on the correct responses only.

Blocks B1, B2, and B5 in Table 1.1 are considered as pure practice blocks and are dis-

carded from the computation. Only trials from Blocks B3, B4 (i.e., Mapping A) and B6, B7

(i.e., Mapping B ) are used for the computation.

The error correction strategies based on built-in correction (D1 and D2 in Table 2.1) refer

to the IAT procedure including feedback, according to which respondents have to correct

their incorrect responses to continue with the experiment. The response time considered for

the computation of the D score is the response time at the first (incorrect) response inflated by

the time required to correct it. All other algorithms (from D1 to D6 in Table 2.1) use a post-

hoc error correction strategy, for which the incorrect responses are replaced by the average

response time of the correct responses in the block in which the error occurred increased

by a standard penalty (i.e., either 600 ms or twice the standard deviation). The other feature

differentiating the D score algorithms is the lower tail treatment, according to which fast trials

(trials faster than 400 ms) are discarded or not.

Regardless of the specific features of each algorithm, the core procedure for computing
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the D score is the same. Firstly, the D scores of the associative practice blocks (Eq. 2.1):

Dpractice =
MB6 −MB3

SDB6, B3
, (2.1)

and of the associative test blocks (Eq. 2.2):

Dtest =
MB7 −MB4

SDB7, B4
, (2.2)

are computed. In both cases, the difference in the average response time between the two

critical blocks is divided by the standard deviation computed on the pooled trials of both

blocks. Once the Dpractice and the Dtest are obtained, it is possible to compute the actual D

score:

D score =
Dpractice +Dtest

2
. (2.3)

The block order in Equation 2.1 and Equation 2.2 is arbitrary and can be reversed. The result-

ing D has to be interpreted accordingly. In the Coke-Pepsi IAT in Chapter 1, Blocks B3 and

B4 constituted the Coke-Good/Pepsi-Bad condition. Conversely, the Pepsi-Good/Coke-Bad

condition was composed of Blocks B6 and B7. If the D score is computed following the order

of the blocks in Equation 2.1 (i.e., MB6 −MB3) and in Equation 2.2 (i.e.,MB7 −MB4), a posi-

tive score would indicate slower responses in the Pepsi/Good-Coke/Bad condition than in the

Coke/Good-Pepsi/Bad one, probably indicating a preference for Coke over Pepsi. Vice versa,

if the order of the Block in Equations 2.1 and 2.2 is reversed (i.e., MB3−MB6 and MB4−MB7,

respectively), a positive score would indicate slower responses in the Coke/Good-Pepsi/Bad

condition than in the Pepsi/Good-Coke/Bad condition, indicating a possible preference for

Pepsi over Coke.

2.2 The SC-IAT D score

Since blocks B1 and B3 (Table 1.2) are considered as pure practice blocks, they are discarded

from the computation of the SC-IAT D score. If a rtw is included in the administration



26 CHAPTER 2. TYPICAL SCORING OF IMPLICIT MEASURES

procedure, all responses exceeding it are considered as non-responses and are discarded from

the computation. All responses with a latency faster than 350ms are discarded, and incorrect

responses are replaced with the average response time of the block in which the error occurred

inflated by a standard penalty of 400ms.

After cleaning and preparing the data, the SC-IAT D score is simply computed as the

difference in the average response time of the two critical blocks (i.e., MB4−MB2) divided by

the standard deviation computed on the correct trials of both blocks. As for the IAT, the order

of the critical blocks is arbitrary and the interpretation of the D score changes accordingly.

In the Coke SC-IAT example illustrated in Chapter 1, Block B2 was the Coke-Good con-

dition, while Block B4 was the Coke-Bad condition. Following this structure, if the D score

is computed by taking the difference between Blocks B4 and B2, a positive score would in-

dicate slower responses in the Bad/Coke condition than in the Good/Coke one, standing for

a positive evaluation of Coke. Vice versa, if the score is computed in the opposite direc-

tion (i.e., MB2 − MB4), a positive score would indicate slower responses in the Good/Coke

condition than in the Bad/Coke condition, indicating a plausible negative evaluation of Coke.

2.3 A fairer comparison between the IAT and the SC-IAT

In Study 1, Karpinski and Steinman (2006) directly investigated and compared the predictive

abilities of a Coke-Pepsi IAT, a Coke SC-IAT, and a Pepsi SC-IAT. The behavioral outcome

was the choice between a can of Coke and a can of Pepsi. As their results suggested, the

measures obtained from the Coke-Pepsi IAT and the Pepsi SC-IAT played a role in predicting

the soda choice, while the measure obtained from the Coke SC-IAT did not contribute to the

choice prediction. Drawing on these results, authors speculated that the soda choice is more

guided by a positive evaluation of Pepsi than by a negative evaluation of Coke. Nonetheless,

the direct comparison between the predictive ability of the two implicit measures has been

poorly investigated.

Despite the study by Karpinski and Steinman (2006) provided interesting information on

the functioning of implicit processes and the comparison between implicit measures, it also
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had some shortcomings that might have undermined the validity of their results. The aim

of the study reported in this section was to to provide a fairer comparison of the predictive

ability of the IAT and the SC-IAT in respect to a behavioral choice by presenting new scoring

algorithms for the two implicit measures. This study is published in Epifania, Anselmi, and

Robusto (2020b).

Among the shortcomings in Karpinski and Steinman (2006), the sample size was rather

small. Moreover, the comparison between the predictive abilities of the implicit measures

might have been affected by issues concerning their administration and scoring procedures.

The IAT and SC-IAT differed in the number of trials, the number of blocks, and the number

of exemplars representing each category. The SC-IAT employed more trials and more stim-

uli than the IAT, for both the evaluative dimensions (twenty-one exemplars for each SC-IAT

evaluative dimension versus five exemplars for each IAT evaluative dimension) and the object

categories (seven exemplars for each SC-IAT target object category and five exemplars for

each IAT target object category). Furthermore, the administration of the SC-IAT included a

rtw, while that of the IAT did not have such a constraint on the responses. Since the presence

of a rtw makes the task more difficult and produces a sense of urgency that is otherwise miss-

ing (Karpinski & Steinman, 2006), the performance at the two implicit measures might have

differed also according to this variable. Additionally, in the SC-IAT respondents were given

feedback for each correct and incorrect response, while the IAT administration procedure did

not include any feedback. The labels used for representing the positive and negative evalua-

tive dimensions changed across implicit measures (Pleasant vs Unpleasant for the IAT and

Good vs Bad for the SC-IAT), as well as the response keys used for sorting the stimuli. The

IAT D score was computed according to the D score procedure in Greenwald et al. (2003),

despite Karpinski and Steinman (2006) failed to report the exact algorithm they employed.

The SC-IAT D score presented in Section 2.2 was used for computing the SC-IAT D score.

Given the differences between administration and scoring, the comparison between the

ability of the IAT and that of the SC-IAT to predict a behavioral outcome might have been

unfair. To the best of our knowledge, there is neither a scoring procedure employing the same

criteria for both the IAT and the SC-IAT, nor an attempt to align the two implicit procedures to
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allow for a fairer comparison between their predictive ability. It would be interesting to com-

pare the predictive ability of the two implicit measures by using the same scoring procedure

on their data and by keeping the administration as similar as possible, while acknowledging

their key features (e.g., block types and usual length of the blocks). If by using the same

scoring procedure and by reducing the administration-related differences there are still dif-

ferences in the predictive ability of the two measures, these differences can be reasonably

attributed to the implicit procedure itself.

To obtain a fairer comparison between the two implicit measures, both administration

(e.g., stimuli, rtw, feedback) and scoring of the two procedures have been aligned.

2.3.1 Method

To test the predictive ability of the new scoring procedures, one Chocolate IAT, one Dark

chocolate SC-IAT, and one Milk chocolate SC-IAT were developed. The decision to use

chocolate as the object category was driven by different reasons. Firstly, chocolate preference

should not be sensitive to social desirability, and hence respondents would have no concerns

in explicitly reporting their actual chocolate preference. Moreover, it offers the chance to ask

for a behavioral choice disguised as a reward for the participation.

Inquisit 3.0 (Software, 2011) was used for administering the implicit measures (i.e., the

IAT and the two SC-IATs) and the demographic questionnaire.

Participants. Participants were recruited at the University of Padova. One-hundred and

sixty-one people (F = 63.55%, Age = 23.95 ± 2.83) volunteered to take part in the study,

with no compensation. Participants were informed about the confidentiality of the data, and

they were given the possibility to withdraw from the experiment at any time they wished.

They were asked for their consent to take part in the study. Majority of the participants were

students (94.08%), including both undergraduates, master, and Ph.D. students. Only two

participants reported a Ph.D. title, while the majority reported a bachelor’s degree (43.42%),

immediately followed by those who reported a high school diploma (32.24%) or a master’s

degree (23.03%).
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Materials and Procedure. Seven images of chocolate were properly modified to represent

the Dark and Milk object categories, for a total of fourteen chocolate images. Three indepen-

dent judges evaluated the stimuli regarding their properties, specifically whether they were

clearly identifiable as dark or milk chocolate images. The three judges agreed on the repre-

sentativeness of the stimulus in respect to the category to which it was supposed to belong.

All chocolate images were presented on a white background.

In the Chocolate IAT, both dark and milk chocolate images were used. In the two SC-

IATs, only either dark (Dark SC-IAT) or milk (Milk SC-IAT) chocolate images were used.

Object categories were labeled Dark or Milk. Evaluative attributes categories were com-

posed of 13 stimuli each. The evaluative categories were labeled as Positive (i.e., “good”,

“laughter”, “pleasure”, “glory”, “peace”, “happiness”, “joy”, “love”, “wonderful”, “beauti-

ful”, “excellent”, “heaven”, “marvelous”) or Negative (i.e., “evil”, “bad”, “horrible”, “terri-

ble”, “annoying”, “pain”, “failure”, “hate”, “nasty”, “disaster”, “agony”, “ugly”, “disgust”).

Response key “E” was used for sorting the stimuli belonging to the categories represented on

the left-side of the screen. Response key “I” was used for sorting the stimuli belonging to the

categories represented on the right side of the screen. The SC-IAT practice Blocks B1 and

B3 were composed of 20 trials, as for the practice blocks of the IAT. Neither the IAT nor the

SC-IATs included any feedback or rtw. Respondents were asked to be as fast and accurate as

they could in performing the tasks.

Respondents were explicitly asked to report their evaluation for dark and milk chocolate

on two distinct items (“How much do you like dark chocolate?” and “How much do you

like milk chocolate?”) rated from 0 – Not at all to 5 – Very much. The order of presentation

of the implicit measures was counterbalanced across participants, while the demographic

questionnaire and the choice were kept constant at the end of the experiment.

As a reward for their participation, respondents were offered with either a free dark choco-

late bar or a milk chocolate one. The experimenter registered their choices after they left the

laboratory.

Chocolate IAT: The critical blocks were composed of 60 trials each (20 practice and 40

test), defining the Dark-Good/Milk-Bad condition (DGMB), and the Milk-Good/Dark-Bad
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condition (MGDB).

Dark SC-IAT: The critical blocks were composed of 72 trials each, defining the Dark-Good/Bad

(DG) and the Good/Dark-Bad (DB) conditions.

Milk SC-IAT: As for the Dark chocolate SC-IAT, the critical blocks were composed of 72

trials each, defining the Milk-Good/Bad (MG) and the Good/Milk-Bad (MB) conditions.

2.3.2 Data analysis

Data cleaning and D score

All the IAT D score algorithms not including a built-in correction (algorithms D3, D4, D5

and D6 in Table 2.1) were computed. The procedure described in Section 2.2 was followed

for computing the SC-IAT D score.

The scoring algorithms that have been introduced in this study result from different com-

binations of two main characteristics. One concerns the trials on which the standard deviation

for the replacement of the incorrect responses is computed (i.e., only correct trials vs. all tri-

als). The other concerns the quantity used for standardizing the difference in the response

times between the associative conditions (i.e., Cohen’s pooled standard deviation vs. pooled

trials standard deviation). Cohen’s pooled standard deviation for two groups of size n1 and

n2 is computed as:

SDpooled =

√︄
(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 + n2 − 2
(2.4)

The resulting eight combinations (identified by letter “m”, modified) are illustrated in Ta-

ble 2.2.

While the typical procedure for the SC-IAT includes a default lower tail treatment, the

lower tail treatment for the IAT depends on the specific D score algorithm (see Table 2.1).

To have a comparable score, a common lower tail treatment for both procedures is set (i.e.,

responses with a latency less than 350 ms are discarded). Since it is not uncommon to find

SC-IATs with no rtw, a common upper tail treatment for response times was proposed for
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Table 2.2
Overview of modified algorithms for computing the IAT and the SC-IAT scores.

Feature m1 m2 m3 m4 m5 m6 m7 m8

Lower tail treatment < 350 ms

Upper tail treatment > 10,000 ms

Error treatment Mean (Correct) + 2 sd (Correct) Mean (Correct) + 2 sd

Denominator Pooled trials Cohen Pooled trials Cohen

Denominator trials Correct All Correct All Correct All Correct All

both implicit measures (i.e., responses over 10,000 ms were discarded). Concerning the SC-

IAT upper tail treatment, it might be argued that the deletion of the responses higher than

1,500 ms (i.e., the rtw cut-off) would be a more appropriate threshold for slow responses.

Nonetheless, the presence of the rtw itself produce an urge to respond that is missing when

the rtw is not included in the administration procedure (Karpinski & Steinman, 2006).

Since the SC-IAT is known to be an easier task than the IAT (Karpinski & Steinman,

2006), the latency of the responses in the SC-IAT tend to be faster than the latency of the

responses in the IAT. Therefore, assuming 600 ms as a reasonable time for correcting the

incorrect response might be a too strong assumption for the SC-IAT data. Conversely, the

penalty used in the SC-IAT (400 ms) might be not enough for acknowledging the response

time needed for correcting the incorrect response in the IAT. For this reason, the incorrect

responses are replaced by the average response times in the block in which the error occurred

inflated by two times the standard deviation of the block.

The pooled trials standard deviation and the Cohen’s pooled standard deviation were com-

puted either considering only correct responses or all trials. In the former case, the variability

due to incorrect responses is not accounted for, while it is addressed in the latter case. Finally,

the IAT modified procedures were computed as the difference between the two associative

conditions, instead of as the mean of the standardized average response time differences be-

tween the practice and test blocks.
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The IAT scores (typical and modified) were computed so that positive scores indicated

faster responses in associating milk chocolate with positive attributes and dark chocolate

with negative attributes, hence an implicit preference for milk chocolate over dark chocolate.

Conversely, negative scores indicated faster responses in associating dark chocolate with pos-

itive attributes and milk chocolate with negative attributes, hence an implicit preference for

dark chocolate over milk chocolate.

For the SC-IATs, both typical and modified procedures were computed so that positive

scores indicated faster responses in associating the target chocolate with positive attributes

than with negative attributes, hence an implicit positive evaluation of the target chocolate.

Conversely, negative scores indicated faster responses when the target chocolate was associ-

ated with negative attributes, hence an implicit negative evaluation of the target chocolate.

Consistency between modified and typical scores, and relationship with explicit mea-

sures

Pearson’s correlations between explicit chocolate evaluations, typical and modified scoring

are computed. Pearson’s correlations are computed between the typical and modified scores

to check for their consistency.

Prediction of the behavioral outcome

The typical and modified scores are regressed on the chocolate choice, coded as 0 for the

dark chocolate choice (DCC) and as 1 for the milk chocolate choice (MCC). Each score is

regressed on the choice in a separate logistic regression. Since the choice is presented as a

dichotomous task in which dark chocolate is contrasted with milk chocolate, it is plausible

that the relative preference for one chocolate over the other plays a role in determining the

actual choice. The score of each SC-IAT conveys a unique information on the absolute pos-

itive or negative evaluation of one type of chocolate. As such, each of them lacks a part of

information that might be crucial in predicting the choice. The use of the linear combination

of both SC-IATs scores or a combined SC-IAT score might solve this issue. However, since
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the SC-IATs scores are obtained from two different experiments, their combination, either

linear or in a comprehensive score, might be considered a stretch. Consequently, both the lin-

ear combination of the Dark SC-IAT and Milk SC-IAT scores and each of them individually

are used for predicting the choice.

Nagelkerke’s R2 (Nagelkerke, 1991) and model accuracy of prediction (Faraway, 2016)

are used as criteria for investigating the scores best accounting for the behavioral choice.

Specifically, model general accuracy (i.e., the ratio between the number of chocolate choices

correctly identified by the model and the total number of choices), DCC accuracy (i.e., the

ratio between the number of DCCs correctly identified by the model and the total number of

observed DCCs), and MCC accuracy (i.e., the ratio between the number of MCCs correctly

identified by the model and the total number of observed MCCs) are computed.

2.3.3 Results

Data from nine participants were discarded. Eight of them explicitly reported not understand-

ing the tasks they were asked to perform in either the IAT or one of the SC-IATs, while one

of them registered too many fast responses, specifically in the Dark chocolate SC-IAT (more

than 30% of responses with a latency lower than 350ms). The final sample was composed of

152 participants (F = 63.82%, Age = 24.03± 2.82). The milk chocolate bar was chosen by

the 48.03% of the participants.

The median for the explicit evaluation of dark chocolate was 3 (Q1 = 2, Q3 = 5). The

median for the explicit evaluation of milk chocolate was 4 (Q1 = 3, Q3 = 4). No trials

exceeding the threshold of 10,000 ms were found in the SC-IATs. Three trials exceeding the

10,000 ms threshold were found in the IAT, and they were eliminated. The lowest percentages

of trials faster than both 400 ms (1.39%) and 350 ms (0.19 %) were found in the IAT. The

two SC-IATs showed similar percentages of trials faster that 350 ms (1.00% and 0.90% in

Milk SC-IAT and Dark SC-IAT, respectively), as well as of trials faster than 400 ms (4.40%

and 4.32% in Dark SC-IAT and in Milk SC-IAT, respectively). All implicit measures had the

same overall percentage of correct responses (95%).
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In the IAT, the overall average response time was 862.03 ms (sd = 496.50, skewness

= 3.45, kurtosis = 22.01). The average response time in the DGMB condition was 976.44

ms (sd = 555.19, skewness = 2.88, kurtosis = 14.01) and that in the MGDB condition was

747.62 ms (sd = 398.30, skewness = 4.76, kurtosis = 48.62).

The overall average response time in the Dark SC-IAT was 679.45 ms (sd = 328.72,

skewness = 4.10, kurtosis = 27.94). The average response time in the DB condition was

673.71 ms (sd = 322.87, skewness = 3.90, kurtosis = 24.46) and that in the DG condition

was 685.19 ms (sd = 334.39, skewness = 4.27, kurtosis = 30.86).

The overall average response time in the Milk SC-IAT was 675.90 ms (sd = 322.31,

skewness = 4.48, kurtosis = 38.19). The average response time in the MB condition was

695.72 ms (sd = 344.84, skewness = 4.10, kurtosis = 28.32) and that in the MG condition

was 656.08 ms (sd = 296.78, skewness = 4.98, kurtosis = 54.05).

Relationship with explicit measures

Descriptive statistics for the typical scoring of all implicit measures, along with their correla-

tion with explicit measures, are reported in Table 2.3.



Table 2.3
Descriptive statistics of the scores and correlations (r) with explicit chocolate evaluations.

m M (sd) Min Max rMilk rDark D M (sd) Min Max rMilk rDark

IAT m1 0.64 (0.62) −1.91 1.72 0.40∗∗∗ −0.36∗∗∗ D3 0.41 (0.41) −1.29 1.25 0.42∗∗∗ −0.38∗∗∗

m2 0.64 (0.60) −1.86 1.69 0.40∗∗∗ −0.37∗∗∗ D4 0.39 (0.39) −1.26 1.27 0.41∗∗∗ −0.38∗∗∗

m3 0.73 (0.73) −2.25 2.84 0.39∗∗∗ −0.34∗∗∗ D5 0.40 (0.41) −1.29 1.29 0.42∗∗∗ −0.37∗∗∗

m4 0.72 (0.70) −2.12 2.59 0.39∗∗∗ −0.35∗∗∗ D6 0.39 (0.39) −1.26 1.32 0.41∗∗∗ −0.37∗∗∗

m5 0.64 (0.63) −2.29 1.72 0.40∗∗∗ −0.35∗∗∗

m6 0.64 (0.60) −1.85 1.69 0.40∗∗∗ −0.36∗∗∗

m7 0.72 (0.75) −2.34 2.85 0.39∗∗∗ −0.34∗∗∗

m8 0.72 (0.71) −2.11 2.60 0.39∗∗∗ −0.35∗∗∗

Dark SC-IAT m1 −0.06 (0.35) −0.98 1.07−0.22∗∗ 0.18∗ Dark −0.05 (0.31) −0.74 0.78−0.19∗ 0.17∗

m2 −0.06 (0.34) −1.03 0.94−0.23∗∗ 0.17∗

m3 −0.06 (0.36) −1.01 1.07−0.22∗∗ 0.17∗

m4 −0.06 (0.35) −1.05 0.94−0.22∗∗ 0.17∗

m5 −0.06 (0.36) −1.00 1.13−0.20∗ 0.16∗

m6 −0.06 (0.35) −0.95 0.99−0.20∗ 0.16

m7 −0.06 (0.36) −1.04 1.13−0.19∗ 0.16

m8 −0.06 (0.35) −0.97 1.00−0.20∗ 0.16

Milk SC-IAT m1 0.16 (0.39) −1.92 1.22 0.17∗ 0.04 Milk 0.15 (0.33) −0.93 1.21 0.13 0.06

m2 0.16 (0.39) −1.93 1.13 0.17∗ 0.04

m3 0.16 (0.41) −1.92 1.5 0.17∗ 0.04

m4 0.16 (0.40) −1.94 1.38 0.17∗ 0.04

m5 0.16 (0.38) −1.39 1.23 0.15 0.05

m6 0.16 (0.37) −1.40 1.14 0.15 0.05

m7 0.17 (0.39) −1.39 1.51 0.16∗ 0.05

m8 0.16 (0.39) −1.40 1.39 0.16∗ 0.05

Note: ∗∗∗ p < .001, ∗∗ p < .01, ∗ p < .05. m: Modified scoring algorithms; D: Typical scoring algorithms
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Regardless of the scoring algorithm, the SC-IAT scores tended to have smaller effect sizes

than the IAT scores. The IAT modified scores showed higher effect sizes than the IAT typical

scores. The modified and typical SC-IAT scores were more consistent between each other.

The explicit dark chocolate evaluation negatively and moderately correlated with the ex-

plicit milk chocolate evaluation (r = −.39, p < .001). The IAT and the Dark SC-IAT typical

scores significantly correlated with both explicit chocolate evaluations. The Milk SC-IAT

typical score correlated with neither the Dark nor the Milk explicit evaluations. The IAT

modified scores significantly and moderately correlated with the explicit evaluations of both

dark and milk chocolate. The modified scores of both SC-IATs significantly correlated with

the explicit evaluation of milk chocolate. Only the first four modified scores of the Dark SC-

IAT significantly correlated with the explicit evaluation of dark chocolate. The correlation

between the explicit evaluation of dark chocolate and the scores of the Milk SC-IAT (both

typical and modified) was near zero.

Consistency between typical scores, modified scores, and explicit measures

The correlation coefficients between the typical IAT D scores ranged between .99 and 1.00

(all ps < .001). The correlations between the typical IAT scores and the Dark SC-IAT typical

score were all −.21 (all ps < .01). No correlations were found between the typical IAT D

scores and the typical Milk SC-IAT score (correlations ranged between −.04 and −.03, all ps

> .05). The typical D-Dark and D-Milk scores positively correlated between each other (r =

.15, p > .05), but the correlation was not significant. The correlations between IAT modified

scores ranged between .97 and .99 (all ps < .001). Their correlations with modified the D-

Dark scores ranged between −.31 and −.28 (all ps < .001). The modified D-Milk scores

and the modified IAT D scores did not correlate with each other (correlation coefficients

ranged between −.01 and .01, all ps > .050). The correlations between modified D-Dark

scores ranged between .98 and 1.00 (all ps < .001). The correlations between modified D-

Milk scores ranged between .99 and 1.00 (all ps < .001). The correlations between modified

D-Milk and D-Dark scores showed the same direction as the correlation between typical SC-

IAT scores, ranging between .15 and .20. Interestingly, the correlation between all modified
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D-Milk and modified D-Dark score from 5 to 8 (i.e., the scores in which incorrect responses

were replaced by the mean added with twice the standard deviation computed on all trials)

showed slightly stronger and significant correlations, ranging from .18 and .20 (all ps < .010).

Behavioral outcome

Results of the logistic regressions for predicting the chocolate choice are reported in Table

2.4.



Table 2.4
Choice prediction results, single predictors..

m B (SE) R2 Gen DCC MCC D B (SE) R2 Gen DCC MCC

IAT 1 1.35∗∗∗ (0.34) 0.16 0.64 0.65 0.63 D3 2.23∗∗∗ (0.54) 0.18 0.64 0.63 0.66

IAT 2 1.38∗∗∗ (0.35) 0.16 0.62 0.62 0.63 D4 2.26∗∗∗ (0.55) 0.18 0.64 0.66 0.63

IAT 3 1.07∗∗∗ (0.28) 0.15 0.63 0.65 0.62 D5 2.18∗∗∗ (0.53) 0.18 0.63 0.63 0.63

IAT 4 1.12∗∗∗ (0.29) 0.15 0.64 0.66 0.63 D6 2.22∗∗∗ (0.55) 0.17 0.64 0.65 0.63

IAT 5 1.35∗∗∗ (0.34) 0.16 0.64 0.65 0.63

IAT 6 1.38∗∗∗ (0.35) 0.16 0.64 0.63 0.64

IAT 7 1.07 (0.28) 0.15 0.63 0.65 0.62

IAT 8 1.12 (0.29) 0.15 0.64 0.66 0.63

Dark 1 −0.73 (0.48) 0.02 0.53 0.62 0.44 Dark −0.70∗∗∗ (0.54) 0.01 0.53 0.65 0.41

Dark 2 −0.72 (0.49) 0.02 0.53 0.62 0.42

Dark 3 −0.70 (0.47) 0.02 0.53 0.62 0.44

Dark 4 −0.69 (0.48) 0.02 0.52 0.62 0.41

Dark 5 −0.62 (0.47) 0.02 0.52 0.63 0.40

Dark 6 −0.63 (0.48) 0.02 0.52 0.63 0.40

Dark 7 −0.60 (0.46) 0.02 0.51 0.63 0.38

Dark 8 −0.60 (0.47) 0.01 0.51 0.63 0.38

Milk 1 0.33 (0.42) 0.01 0.53 0.77 0.26 Milk 0.35∗∗∗ (0.49) 0.01 0.53 0.78 0.26

Milk 2 0.33 (0.43) 0.01 0.53 0.77 0.26

Milk 3 0.32 (0.40) 0.01 0.52 0.76 0.26

Milk 4 0.32 (0.41) 0.01 0.53 0.77 0.26

Milk 5 0.31 (0.44) 0.00 0.50 0.75 0.23

Milk 6 0.31 (0.44) 0.00 0.52 0.76 0.26

Milk 7 0.30 (0.42) 0.00 0.50 0.75 0.23

Milk 8 0.30 (0.42) 0.00 0.51 0.76 0.25

Note: ∗∗∗ p < .001. Bs are the log-odds for the probability of choosing milk chocolate; R2: Nagelkerke’s R2, m: Modified

scoring algorithms; D: Typical scoring algorithms, Gen: General accuracy of prediction, DCC: Dark Chocolate Choice accuracy

of prediction, MCC: ilk Chocolate Choice accuracy of prediction.
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The IAT scores outperformed the scores of both SC-IATs in predicting the chocolate

choice. The models including the IAT scores showed the highest values of Nagelkerke’s R2,

and they resulted in a better accuracy of the prediction of both types of chocolate. Both

SC-IATs scores showed low values of Nagelkerke’s R2, particularly the Milk SC-IAT one.

The typical and modified IAT scores tended to have similar values of both Nagelkerke’s

R2 and accuracy of prediction. All the modified scores of the Dark SC-IAT resulted in slightly

higher values of Nagelkerke’s R2. Only the first four modified Milk SC-IAT scores showed

slightly higher Nagelkerke’s R2 than the typical ones. The modified SC-IATs scores showed

a slightly worse performance than the typical ones.

The results of the choice prediction provided by the linear combination of the scores of

each SC-IAT are reported in Table 2.5. The linear combination of the SC-IATs scores resulted

Table 2.5
Choice prediction results: SC-IAT scores linear combination.

BDark (SE) BMilk (SE) R2 Gen DCC MCC

D-Dark + D-Milk −0.77 (0.55) 0.46 (0.50) 0.02 0.55 0.67 0.41

m1Dark+ m1Milk −0.81 (0.49) 0.44 (0.43) 0.03 0.56 0.66 0.45

m2Dark+ m2Milk −0.80 (0.50) 0.44 (0.44) 0.03 0.53 0.66 0.40

m3Dark+ m3Milk −0.78 (0.48) 0.43 (0.41) 0.03 0.54 0.66 0.41

m4Dark+ m4Milk −0.77 (0.49) 0.43 (0.42) 0.03 0.54 0.67 0.40

m5Dark+ m5Milk −0.71 (0.48) 0.44 (0.45) 0.02 0.55 0.68 0.40

m6Dark+ m6Milk −0.72 (0.49) 0.44 (0.45) 0.02 0.54 0.68 0.38

m7Dark+ m7Milk −0.68 (0.47) 0.42 (0.43) 0.02 0.55 0.68 0.40

m8Dark+ m8Milk −0.69 (0.48) 0.42 (0.44) 0.02 0.54 0.68 0.38

Note: Bs are the log-odds for the probability of choosing milk chocolate; R2: Nagelkerke’s
R2, m: Modified scoring algorithms; D: Typical scoring algorithms, Gen: General accuracy of
prediction, DCC: Dark Chocolate Choice accuracy of prediction, MCC: ilk Chocolate Choice
accuracy of prediction.

in a better prediction of the chocolate choice than that provided by their singular scores. Their

performance was still outperformed by that of the IAT. The coefficients of the typical and

the modified D-Dark scores tended to be higher than the coefficients of the typical and the
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modified D-Milk scores. The linear combination of the first four scores resulted in higher

Nagelkerke’s R2 values, both in comparison with the typical scores and with the last four

modified scores. The general accuracy and the DCC accuracy were similar across all scores,

while the MCC accuracy showed a higher variability. Specifically, the linear combination of

modified scores m6 and that of modified scores m8 showed the worst performance of all. The

linear combination of m1 resulted in the highest MCC accuracy.

As a final analysis, the incremental validity of the IAT and the two SC-IATs in respect

to the self-report chocolate evaluations was investigated. Four hierarchical multiple logistic

regressions for predicting the chocolate choice were specified for each of the scoring proce-

dure. In the first step, the explicit evaluations of dark and milk chocolate were included. The

IAT D scores entered at the second step. The D-Dark entered at the third step, and the D-Milk

entered at the fourth step. This procedure was followed for both typical and modified scores.

Nagelkerke’s R2 was used as a criterion to decide whether the added predictor was useful to

account for the chocolate choice. Nagelkerke’s R2 at the first step (i.e., the model including

only the explicit chocolate evaluations) was 0.83. From the second step on, Nagelkerke’s R2

remained 0.84 for both typical and modified scores. It is reasonable to argue that the scores of

implicit measures do not add anything to the prediction given by the explicit measures. How-

ever, this result should be interpreted with caution because the explicit chocolate evaluations

were asked right before the behavioral choice.

2.3.4 Final remarks

By aligning the administration and the scoring procedures of the IAT and the SC-IAT as much

as possible it was possible to fairly investigate their relationship with explicit measures and

their ability to predict behavioral outcomes. Consistently with the assumptions underlying the

functioning of the two measures, the IAT scores highly correlated with both explicit chocolate

evaluations, while the scores of the SC-IAT tended to correlate with just one of the explicit

chocolate evaluations.

The IAT outperformed both the SC-IATs in the prediction of the behavioral choice. Tak-
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ing these considerations together, it is possible to argue that the IAT has a better predictive

ability than the SC-IAT.

However, the higher predictive ability of the IAT scores might be due to the characteristics

of the choice task itself. Since participants were presented with two different bowls of choco-

late bars and were invited to take just one of them, their like and/or dislike for both types

of chocolate were concurrently playing a role in determining the choice. A measure able to

include the comparative evaluation of both chocolate types, like the IAT, might hence best

account for the actual chocolate preference from which it derives a better predictive ability.

Conversely, measures dealing with only one of the components of the chocolate evaluation,

like the SC-IAT, might be disadvantaged. However, even when SC-IAT scores were consid-

ered concurrently the general accuracy of prediction was similar to the one obtained when

the single scores were considered. This result support the claim according to which a mea-

sure accounting for the relative attitudes towards two contrasting objects results in a better

prediction of the choice between alternative options.

Since the better performance of the IAT might have been due to both the choice task and

the type of preference assessed, it would be interesting to compare the performance of the two

implicit measures when a clearly contrasted category is not identifiable, such as in the self-

esteem case. In such cases, the absolute measure provided by the SC-IAT should outperform

the relative one provided by the IAT in predicting behavioral outcomes. Additionally, the

SC-IAT might outperform the IAT in predicting behavioral outcomes when the choice task is

not strictly dichotomous. For instance, respondents might be left free to choose between two

chocolate bars, both or none of them, or even between different types of candy bars, including

dark and milk chocolate ones.

Both in Karpinski and Steinman (2006) and this study, the predictive validity of implicit

measures was assessed for non-socially relevant stimuli, like soda and chocolate preference.

Future studies should investigate the IAT and SC-IAT predictive validity in respect to socially

relevant stimuli, such as members of stigmatized social groups. In pursuing this aim, differ-

ent behavioral indicators might be used as a dependent variable, such as the willingness to

affiliate with members of the stigmatized social group.
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Finally, Karpinski and Steinman (2006) administered the SC-IAT with a rtw at 1,500ms,

while in this study it was not used. We could have applied an a posterior threshold for upper

tail responses as if a rtw had been used in the administration. However, we decided not to

do so because using a rtw affects the performance of the respondents. Indeed, Karpinski

and Steinman (2006) observed that the presentation of the rtw produced a sense of urgency

for giving the response that was missing when the rtw was not included. Future research on

the systematic comparison between the two implicit measures might include a response time

window for both the IAT and the SC-IAT.

2.4 R development

2.4.1 DscoreApp

Different options are available for computing the IAT D score, including SPSS syntax, In-

quisit scripts, and R packages.

Inquisit scripts are the most straightforward way for obtaining the D score, since they

compute it right after the IAT administration procedure, store the results along with other

information on participants’ performance (e.g., response time for each IAT trial, correct and

incorrect responses), and do not require any programming skills. Nonetheless, these scripts

work only when associated with the Inquisit administration procedure, can compute just one

of the available D score algorithms at the time, and do not provide functions for visually

inspecting the results. Additionally, Inquisit requires a license to be used.

SPSS syntaxes provide several information on the performance of the respondents, and

they are not tied to a specific administration software, even though their use requires the

SPSS license and a certain degree of expertise with the SPSS language. They allow for

computing different D score algorithms by providing different scripts for the computation of

each algorithm. No functions for directly plotting the results are provided.

The R packages (illustrated in Table 2.6) provides the open source alternative to both

Inquisit and SPSS syntaxes. However, their use is not always straightforward because they
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require quite advanced programming skills, their functions are limited and they are often not

well defined and understandable.



Table 2.6
Overview of the available packages for computing the IAT D score.

Package Functions Multiple

D score

Plot Reliability

IATanalytics

(Storage, 2018a)

IATanalytics: Function to analyze raw data from an

IAT

No No No

sampledata: Sample data set from a typical IAT

IATScore

(Storage, 2018b)

BriefIAT: Sample Brief IAT Data set (Abbreviated IAT) No No No

IAT: Sample IAT Data set (Typical)

IATScore: Score Implicit Association Test (IAT) output

TooFastIAT: Sample IAT data set (Participant went too

fast)

IAT (Martin,

2016)

cleanIAT: Clean IAT data using the updated D-Scoring

algorithm

Yes Yes Yes

IATData: Sample Gender Stereotype Implicit Association

Test data

plotIIV: Plot intra-individual variability of reaction time

plotIndVar: Plot individual variability in the IAT
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Table 2.6
Overview of the available packages for computing the IAT D score.

Package Functions Multiple

D score

Plot Reliability

plotItemErr: Plot proportion of errors per item in the

IAT

plotItemVar: Plot IAT item variability

IATScores

(Costantini,

2018)

alg2param: Convert the algorithm names to the generat-

ing parameters

Yes Yes Yes

Pretreatment: Pretreat the IAT data in input

RobustScores: Compute the Robust IAT scores

SplitHalf: Split half reliability

TestRetest: Test-Retest reliability

Tgraph: Layout qgraph for multiple comparisons by

package nparcomp
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The IATanalytics and IATscore packages require for a specific arrangement of

the columns of the data set to compute the D score, and they both include only the functions

for computing the D score. The IATscore package includes also a function for scoring

the Brief IAT (B-IAT; Sriram & Greenwald, 2009). Both packages compute the D score for

one respondent at a time, and no details on the specific algorithm are provided. The IAT

package includes functions for cleaning the original data set, for plotting the data, and for

computing different D score algorithms. It does not provide a clear labeling of each of the

algorithms, but it allows the users to specify whether to discard the trials under 400 ms or

the error penalty to use. The combinations of these options result in the different D score

algorithms, even though is not a convenient solution for the users. The IAT package asks for

a counter-intuitive coding of accuracy responses (i.e., 0 for correct responses, 1 for incorrect

responses). The plotting functions included in this package are not meant for plotting the D

score results but the raw data.

The IATScores package appears to be the most complete one. Besides the functions for

cleaning the data and for computing the typical IAT D score algorithms, it includes functions

for the computation of the robust D score algorithms presented in Richetin et al. (2015).

Additionally, it includes functions for computing the IAT reliability (i.e., test-retest reliability

and split half). As for the IAT package, the plotting functions in the IATScores package

are not meant for plotting the results of the D score computation.

DscoreApp (Epifania et al., 2019) was developed in R by means of the shiny (Chang et

al., 2018) and shinyjs (Attali, 2018) packages with the aim of providing an open source

tool able to make the D score computation easier for researchers who commonly employ the

IAT but have little or no programming experience. Furthermore, by providing an immedi-

ate representation of the results, it allows for a glimpse of the IAT results. DscoreApp can

be retrieved at http://fisppa.psy.unipd.it/DscoreApp/. The source code of

DscoreApp is available on GitHub (https://github.com/OttaviaE/DscoreApp).

An overview of the functioning of DscoreApp has been published in Epifania et al. (2019).

A more exahustive illustration of the app can be found in Epifania, Anselmi, and Robusto

(2020a).

http://fisppa.psy.unipd.it/DscoreApp/
https://github.com/OttaviaE/DscoreApp
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DscoreApp is organized in different panels (“Input”, “Read Me First”, “D-score results”,

and “Descriptive statistics”). The setting options and the functions in the “Input” panel, as

well as the menu in the “Read Me First” panel, are interactive, so that users can easily access

the information on DscoreApp functions and amenities.

The “Read Me First” panel provides important information on DscoreApp functioning,

including an overview of the D score algorithms. A downloadable template suggested for

using the app is provided (i.e., the Download template button), even though it is not nec-

essary to use it. DscoreApp is designed to work as long as the uploaded data set is in a

CSV format, and includes the following variables: participant (i.e., participants’ IDs),

latency (i.e., latency of the responses in milliseconds), correct (i.e., accuracy of the

responses, either 0 for incorrect responses or 1 for correct responses), block (i.e., the labels

identifying the four associative blocks of the IAT, B3, B4, and B6, B7 in Table 1.1). This

panel also contains information on the downloadable file containing the results of the D score

computation.

Users can either upload their own data set (i.e., by using the Browse button), or use the

toy data set included in DscoreApp (i.e., by checking the Race IAT dataset checkbox)

in “Input” panel. Once the data set is read, the app automatically populates the drop-down

menus for choosing the labels denoting the four associative blocks, and the Prepare data

button becomes clickable. When data are ready for the D score computation, the “Data are

ready” message appears next to the Prepare data button, and all options for its computation

and graphical display become active. Once a D score algorithm is chosen from the “Select

your D” drop-down menu, the Calculate & Update button becomes active. Users can de-

cide whether to eliminate participants whose error percentage exceeds a specified threshold

(default is 25% according to Nosek et al., 2002) or whose fast responses (trials with latency

< 300ms) exceed 10% of the total responses (Greenwald et al., 2003). When these options

are selected, participants exceeding the thresholds (if any) are not displayed in the “D-score

results” panel. Every time a change in the configuration is made, the Compute & Update

button must be clicked to apply the changes.

The “D-score results” panel (Figure 2.1) is populated once the Calculate & Update but-
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ton is clicked for the first time. Both descriptive statistics of the results and their graphical

Figure 2.1: DscoreApp results panel.

representation are available at the same time, and they change interactively as users change

the configuration in the “Input” panel. The Summary box reports the descriptive statistics

of the Dpractice, Dtest, and the actual D score. The Trials > 10,000ms box reports the

number of trials discarded because of a slow latency (if any), while the Trials < 400ms

box reports the number of trials discarded because of fast response times. This box is pop-

ulated only when a D score with fast trials deletion is selected, otherwise the “Not expected

for this D” label is displayed. The Practice-Test reliability box contains the

IAT reliability computed as the correlation between associative practice and associative test

blocks across participants (see Gawronski et al., 2017, for further details).

Graphical representation is a convenient way to identify extreme scores or particular re-

sponse patterns. Since it might be difficult to link a particular point (or points area) in the
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graph with the corresponding respondent ID in the data set, DscoreApp comes with two

handy tools designed to access the IDs of the respondents from the graph. By clicking on a

point in the graph, the ID of the participant that corresponds to the selected point, and his/her

D score, appears in the Points box. By highlighting an area of the graph, the IDs of partic-

ipants included in the area, along with their D scores appears in the Area box. The Points

and Area boxes are represented in Figure 2.1, right underneath the graphical representation

of the results.

DscoreApp provides users with different options for the graphical representation of the

results (Figure 2.2), at both the individual (Figure 2.2a) and sample (Figure 2.2b, 2.2c, 2.2d)

levels. All the graphical representations can be downloaded in a .pdf format.
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Figure 2.2: Available graph representations.

2.4.2 The implicitMeasures package

Despite both the IAT and the SC-IAT are commonly used for the implicit assessment of

several constructs, R packages for the computation of only the IAT D score are available,

while there are no packages for computing the SC-IAT D score.

Besides the above-mentioned shortcomings of the R packages for computing the IAT D
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score, there are also issues related to the replicability of the results. The choice on which IAT

D score algorithm to compute might influence the results and the conclusions that are drawn

from them (Ellithorpe et al., 2015). Moreover, in many cases researchers fail to report of

the exact D score algorithm they decided to use (Ellithorpe et al., 2015). Replicability issues

might also rise from mistakes that might be caused by the many steps needed to clean and

prepare the starting data set for computing the D score (Ellithorpe et al., 2015).

Despite DscoreApp addresses the majority of the replicability issues, it presents some

drawbacks as well. Firstly, since the code is into the Shiny interface, it cannot be called

from the command line, making impossible to replicate it and the results obtained with its

use. To be fair, this is a general and outstanding issue concerning Shiny apps in general.

This might not be a concern for general users, but it is indeed a problem in an open science

framework where every code should be accessible and replicable with no effort at any time.

Moreover, the downloadable graphical representations are provided in a pdf format. As such,

they cannot be further modified.

The implicitMeasures package (Epifania, Anselmi, & Robusto, 2020c, 2020d) was

aimed at addressing the issues concerning both R packages and DscoreApp. It provides

an easy and open source way to clean and score both the IAT and the SC-IAT, to easily

compare different algorithms of the IAT D score, and to provide clear and customizable plots.

The implicitMeasures package has been published in Epifania, Anselmi, and Robusto

(2020d).

The source code of implicitMeasures is available on GitHub (https://github

.com/OttaviaE/implicitMeasures). The package is downloadable from CRAN

(https://cran.r-project.org/web/packages/implicitMeasures/index

.html).

Table 2.7 provides an overview of the functions included in the implicitMeasures

package. The implicitMeaures package provides an easy way to compute the algo-

rithms for the both the IAT and the SC-IAT in an automated way. By explicitly referring

to the D score algorithm that has been used for computing the IAT D score, other users can

easily replicate the results. Additionally, the possibility to compute all available algorithms

https://github.com/OttaviaE/implicitMeasures
https://github.com/OttaviaE/implicitMeasures
https://cran.r-project.org/web/packages/implicitMeasures/index.html
https://cran.r-project.org/web/packages/implicitMeasures/index.html
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Table 2.7
Contents and functions implicitMeasures.

Function Description

clean_iat() Prepare and clean IAT data
clean_sciat() Prepare and clean SCIAT data
compute_iat() Compute IAT D score
compute_sciat() Compute SC-IAT D score
descript_d() Print descriptive table of D scores (also in LATEX)
d_density() Plot either IAT or SC-IAT scores (distribution)
d_point() Plot either IAT or SC-IAT scores (points)
IAT_rel() Compute IAT reliability
multi_dsciat() Plot scores resulting from two SC-IATs
multi_dscore() Compute and plot multiple IAT D scores
raw_data() Example data set

for the IAT D score allows for an easy comparison between them. This makes possible to in-

vestigate whether or how the elimination of fast responses or the error replacement strategies

affect the results.

All objects created with the functions in the implicitMeasures package can be ex-

ported in external files. For example, the data frame obtained from the clean_iat()

function can be easily exported in a CSV file and then uploaded to DscoreApp (see Section

2.4.1).

The functions for plotting the results are based on ggplot2 (Wickham, 2016), and they

can be further modified by users, for instance by taking out the legend, adjusting the figure

margins, changing labels and font. All the plots are then exportable as images (.jpg or .png)

or as a .pdf.
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Chapter 3

Formal modeling

This chapter provides a brief overview of the formal models introduced for modeling IAT

data. These models are generally aimed at the investigation of the cognitive processes and

the automatic associations involved during the performance at the IAT. Their advantages and

drawbacks are outlined and discussed.

Some of these models are solely based on accuracy responses (Section 3.1), while others

are able to concurrently model accuracy and time responses (Section 3.2). Despite the impor-

tant and useful information provided at the sample level and/or the stimulus categories level,

none of these models provides detailed information on the singular stimulus.

The Rasch modeling of IAT data can overcome this issue, as illustrated in Section 3.3. Al-

though this approach provides stimulus-specific information, it also comes with some draw-

backs, mostly related to the discretization of the response times and to the overlooking of the

fully-crossed structure of the IAT.

3.1 Multinomial Models

3.1.1 The Quad Model

The Quad model (Conrey et al., 2005) is a multinomial processing tree model introduced

for disentangling the contribution of automatic processes from that of controlled processes to

the performance of the respondents at the IAT. The Quad model is entirely based on accuracy

responses, and it exploits the logic of the assumption on which the IAT is based (i.e., response

compatibility, according to which responses are faster and more accurate in the condition

53
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consistent with one’s automatically activated associations).

According to this model, the observed accuracy responses are determined by the activa-

tion (or lack of thereof) of four qualitatively different processes, characterized by different

levels of automaticity and controllability. These processes are the automatic activation of an

association triggered by the target stimulus (activation association, AC), the ability to cor-

rectly identify the category to which the stimulus belongs (discriminability, D), the ability to

overcome any automatically activated associations (overcoming bias, OB), and the influence

of any response bias that may intervene in absence of any other process (guessing, G). A

graphical representation of the Quad model is provided in Figure 3.1.
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Figure 3.1: Quad Model (adapted from Conrey et al., 2005). Parameters with arrows pointing towards them are conditional on all
the preceding ones. +: correct response (stimulus assigned to the correct category), −: incorrect response (stimulus assigned to
the incorrect category).
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Each path in Figure 3.1 represents the likelihood that a parameter is activated. The acti-

vation of the parameters are conditional on the activation of the parameters preceding them.

The AC parameter describes the probability that an automatic association is activated

by the triggering stimulus. This parameter expresses the most automatic component of the

model and it is directly related to the strength of the association activated by the stimulus.

The stronger the association between the stimulus and a negative/positive attribute, the more

likely the activation of the automatic association.

The probability of giving the correct response does not solely depend on the activation

of the automatic association, but also on the ability to identify the correct response among

the available ones. In turn, this ability depends on the availability of cognitive resources

and on the application of some effort in determining the correct response. The D parameter

represents the likelihood that the correct response can be identified, not the likelihood that

the correct response is identified. The D parameter depends on several factors, including the

motivation to have a good performance, the attention paid to the stimulus, and the availability

of relevant information in memory.

If a negative automatic association is activated by the triggering stimulus, the respondent

might try to fake the response in a socially desirable way. The OB parameter represents

the likelihood that an activated bias is overcome in favor of a deliberate, and probably more

desirable, response.

The processes described by the D and OB parameters are the ones that are mostly influ-

enced by motivation and that mostly depend on the availability of cognitive resources to be

activated and drive the correct response. They reflect two different aspects of controlled pro-

cesses. The controlled process involved by the D parameter is an active search for the correct

response, while the process described by the OB parameter exploits control for the inhibition

of the response activated by the automatic association.

If none of the above-mentioned processes is activated, then the responses can be influ-

enced by a response bias, such as the tendency to respond with the left response key. The G

parameter represents the likelihood that a response bias, different than the automatic associ-

ation, is activated and drives the responses.
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As previously mentioned, the parameters of the Quad model are estimated from the ob-

served proportions of a correct response given a stimulus type. Each arrow moving from left

to right in Figure 3.1 represents the multiplication between the independent probabilities of

each process. It results in the prediction of a specific response, either correct or incorrect. The

sum of all probabilities associated to that response is the total probability of that response.

Consider a respondent with an implicit preference for Pepsi over Coke. For him/her,

the incompatible condition is the Coke/Good-Pepsi/Bad condition. The probability that this

respondent has of correctly sorting a can of Coke in the incompatible condition is given

by the sum of the paths resulting in a correct response. In this case, three processes lead

to the correct response. As such, the resulting equation is: P(correct|Coke, incompatible) =

AC×D×OB+(1−AC)×D+(1−AC)×(1−D)×(1−G). The first path (AC×D×OB)

represents the probability that an automatic association is activated by the stimulus (AC),

that the response can be identified (D), and that the bias is successfully overcome (OB).

The second path ((1 − AC) × D) represents the probability that the automatic association

is not activated (1 − AC) and that the response can be identified (D). Finally, the third path

((1−AC)× (1−D)× (1−G)) represents the probability that the association is not activated

(1−AC), the correct response cannot be detected (1−D), and that automatically responding

with the left response key is not an effect of guessing (1 − G). The sum of the products of

the independent probabilities yielded by each path results in the total probability of a correct

response to the stimulus.

By qualitatively disentangling the nature of the processes intervening during the perfor-

mance at the IAT, the Quad model offers detailed information on the IAT functioning. Most

importantly, the Quad model explicitly points out that the performance at the IAT should not

be taken as the sole expression of automatic processes. Rather, the contribution of controlled

processes should be acknowledged and taken into account for the explanation of social phe-

nomena.

This point has crucial repercussion on applied researches using the IAT. For instance, in

an IAT for the assessment of implicit prejudice, it would be of the uttermost importance to

understand whether a resulting negative D score (e.g., a D score indicating a preference for
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White people over Black people) is actually due to the automatic activation of the associa-

tion between one of the targeted groups and negative attributes or to other, more controlled,

processes, such as the inability to identify the correct response. The information provided by

the OB parameter allows for understanding whether a positive D score is the expression of

genuinely automatic associations between the stigmatized group and positive attributes or by

the desire to conceal negative attitudes towards the stigmatized group. Both the AC and OB

parameters are associated with the typical IAT D score (Conrey et al., 2005). The D score

was found to be positively associated with the AC parameter (i.e., the stronger the association

activated by the stimulus, the higher the D score value). Moreover, the AC parameter allowed

for pinpointing the contribution of distinct associations in a Race IAT, according to which

both White-pleasant automatic associations and Black-unpleasant ones were related with the

D score. The D score is hence capturing two distinct associations, and it is confounding

them into a unique score. The D score was negatively associated to the ability of suppressing

an automatic activated association described by the OB parameter. The higher the ability to

overcome the bias, and hence the value of OB, the lower the IAT effect as expressed by the D

score.

This evidence suggests that the D score confounds different information into a single

generic score. Firstly, it is not possible to ascertain which of the specific automatic associa-

tions drives the performance at the IAT, leaving its meaning partially obscure. Moreover, con-

trolled and automatic processes cannot be distinguished from one another, and their unique

contribution is lost. It is not possible to ascertain whether the performance is driven by an

actual automatic association or if the IAT effect reflects the ability of the respondents to de-

tect the correct response or their ability of overcoming an automatic activated bias. It appears

evident that distinguishing between these processes is extremely important when inferences

on sensitive psychological constructs, such as implicit bias, are made. Indeed, the implica-

tions of saying that a sample of individuals is implicitly biased towards a social group are

extremely different from saying that the sample has a high ability in detecting the correct

responses. The D score alone cannot be used as a measure of pure implicit bias.

The information provided by the Quad model are extremely useful and meaningful for a
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correct interpretation of the IAT effect. However, it should be taken with caution for at least

two reasons: The results are entirely based on accuracy responses and the person estimates

are at the sample level and not at the individual respondent’s level.

Regarding the first issue, the IAT is known to be an easy task – it is actually designed to

be an easy task by choosing highly representative and easy-to-sort stimuli. As such, the error

rates are extremely low, unless the respondent was distracted or the task itself did not work

properly. This raises issues concerning the estimation of the model parameters and their reli-

ability. Moreover, not using the time responses implies losing the majority of the information

that can be retrieved from the IAT data, which can in turn lead to an incorrect interpreta-

tion of the results. For instance, the higher accuracy of the responses when the automatic

associations is activated might be also associated to slower response times (speed-accuracy

trade-off, Klauer et al., 2007). By considering only the accuracy responses, the Quad model

is not able to rule out this possibility, and the conclusions based on the Quad model might

be misleading. The OB parameter describes the process that controls the accuracy of the re-

sponses when an automatic association is activated and, as such, it should be the one mostly

affected by the speed-accuracy trade-off. Indeed, results of Study 2 in Conrey et al. (2005)

actually pointed in this direction. The OB parameter dropped significantly (i.e., respondents

with automatically activated associations were not able to provide the correct response) when

a time constraint for giving the response was introduced. This result does indicate that the OB

parameter captures a controlled process that needs time to be activated and successfully used.

Not considering response times for interpreting the results from the OB parameter appears to

be a fallacy leading to misleading inferences.

Regarding the second issue, the estimates provided by the Quad model are at either the

sample level or the stimulus categories level. Consequently, both the between–respondents

variability and the between–stimuli one are completely ignored. Moreover, having estimates

at the sample level for the respondents does not allow for investigating their individual dif-

ferences, which is usually the main objective of applied social psychology. Similarly, the

information at the level of the singular stimulus is neglected.

To be fair, in Study 4 in Conrey et al. (2005) respondent–specific estimates were obtained.
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However, obtaining respondent–specific estimates with the Quad model is tricky given the

high error rate needed in the starting contingency table, where stimulus categories are crossed

with the associative conditions, within each respondent. To ensure an high error rate value

for each possible combination, a longer IAT procedure should be adopted. As such, the Quad

model is not feasible for investigating individual differences using IATs of typical length.

3.1.2 The ReAL Model

The ReAL model (Meissner & Rothermund, 2013) is a multinomial processing tree model

based on accuracy responses. This model is aimed at mathematically distinguishing the con-

tribution of the automatic associations from that of recoding or simplification strategies that

might intervene during the performance at the IAT.

The ReAL model is based on two main assumptions. The first assumption is that only

attitude objects activate automatic evaluative associations. Consequently, evaluative asso-

ciations influence responding only for attitudes stimuli, while the same does not hold for

attributes stimuli. Consequently, attitude objects can be sorted according to their evalua-

tive value, while evaluative attributes cannot be sorted according to the attitude objects to

which they are associated. The second assumption logically follows from the first one. To

be recoded into a unique category target stimuli and evaluative attributes must be sharing a

common feature, that is, an intrinsic positive or negative value, which is determined by the

attitude based associations. Attitude based associations can facilitate the correct sorting of

the target stimuli in the condition consistent with individual’s automatically activated associ-

ation (i.e., compatible) but not in that against individual’s automatically activated association

(i.e., incompatible). Therefore, the recoding of target stimuli according to their evaluative

dimension facilitates the performance only in the compatible condition, while it hinders it in

the incompatible one.

For example, in the Coke-Good/Pepsi-Bad condition of a Coke-Pepsi IAT, a respondent

with a strong preference for Coke might simplify the task by sorting Coke exemplars accord-

ing to their positive value. As such, the task is reduced from a 4-choice task (i.e., Coke and
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Good, Pepsi and Bad) to a 2-choice task (i.e., Good, which also includes Coke, and everything

else). However, this strategy can work only in the associative condition that is consistent with

the automatically activated associations of the respondents.

These assumptions allow for assuming that the correct and incorrect response patterns at

the IAT are driven by three processes. Their influence on the performance changes according

to the specific IAT associative condition, as illustrated in Figure 3.2. The illustration of the

ReAL model is based on the Coke-Pepsi IAT example introduced in Chapter 1, considering

a respondent with a strong preference for Coke over Pepsi.
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Figure 3.2: ReAL model (adapted from Meissner & Rothermund, 2013). Parameters with arrows pointing towards them are
conditional on all the preceding ones. +: correct response (stimulus assigned to the correct category), −: incorrect response
(stimulus assigned to the incorrect category).
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In the condition consistent with the automatically activated associations of the respondent

(i.e., compatible condition, top panel of Figure 3.2), three processes are assumed to play a

potential role in driving the responses. If the stimulus appearing on the screen is combined

with the evaluative dimension, the recoded category drives the response with a probability

defined by the Re parameter. Since recoding is always associated with the correct response

key, this process will always end in a correct response. When the recoded category is not

activated, Label based processes (i.e., controlled search for the correct category to which

the stimulus belongs and the associated response key) drive the response, with a probability

defined by the parameter L. This process always ends in a correct response as well. The

automatic evaluative associations (described by the A parameter) drive the response only

when both the Re and L processes fail. If the association with Good drives the response, it

will result in a correct response with a probability of A.

In the condition against the automatically activated associations of the respondent (bottom

panel of Figure 3.2), the recoding processes disappear. As in the compatible condition, when

Label based processes fail, automatic associations drive the response. However, associations

with Good lead to the incorrect response, while associations with Bad result in the correct

response.

The structure of the model is identical for both target objects and evaluative dimensions.

However, since evaluative dimensions cannot be activated by the attitude target objects, their

association parameter is always fixed to .50.

The association parameter A estimated by the ReAL model offers some advantages over

the AC parameter estimated by the Quad model. Firstly, in the ReAL model the association

parameter is estimated separately for each target object category, while in the Quad model the

automatic association parameter is estimated for the associated categories inferred from the

associative condition. The separate estimates for each target object allow for investigating the

nature (i.e., positive or negative) of the evaluative dimension activated by the target objects.

Consequently, estimation of the relative association strength can be avoided, overcoming one

of the most criticized shortcomings of the measure derived from the IAT (e.g., Karpinski

& Steinman, 2006). Nonetheless, caution should be used in the interpretation of separate
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scores deriving from the IAT (Nosek et al., 2005). The Quad model does not include any

parameter able to address potential recoding strategies. As such, the AC parameter might

confound recoding strategies with the actual automatically activated associations (Meissner

& Rothermund, 2013).

Recoding does contribute to the IAT effect by preventing task switching cost from at-

tributes to target in the compatible condition, but not in the incompatible condition. The sep-

arate estimates of the evaluative associations activated by the target stimuli allow for a better

understanding of the IAT effect. Indeed, the evaluative associations involved in the perfor-

mance can be highlighted. For instance, the evaluative association estimates acknowledge

the positive associations driving the IAT effect in a flowers-insects IAT as mostly determined

by positive associations with flowers (Meissner & Rothermund, 2013).

The Label based processes described by the L parameter make possible to infer the easi-

ness of the categorization task according to the stimulus categories. High values of L indicate

that respondents often identified the correct responses grounding on the stimulus categories,

as instructed by the task. The L parameter is sensitive to the type of stimuli presented. The L

parameter results in higher values when the difficulty of the task is reduced (i.e., by presenting

target images instead of words).

Consistently with the Quad model, the ReAL model considers the performance at the IAT

as determined by both automatic and controlled processes. Both models are able to disen-

tangle the automatic component from the controlled one by exploiting the information that

can be retrieved from the accuracy responses. Differently from the Quad model, according

to which the automatic associations are either immediately activated or not, the ReAL model

posits the activation of the evaluative automatic associations only when the activation of all

other processes fails. Moreover, the ReAL model considers the potential effect of the task-

switching cost on the performance at the IAT by introducing a parameter (Re) for capturing

controlled recoding strategies that can facilitate the performance. However, the ReAL model

does not have a parameter explicitly describing the effort for overcoming the automatically

activated bias.

The ReAL model presents some issues nonetheless. Firstly, it is not possible to rule out
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the possibility that the Re parameter includes other non associative processes than just recod-

ing, such as speed-accuracy trade-offs. The information provided by the L parameter does

provide information about the difficulty of the categorization task according to the stimulus

categories. However, this parameter is not able to disentangle the actual task difficulty from

the ability of the respondents to detect the correct response. Besides, it only provides an over-

all parameter for each stimuli category. The functioning of each stimulus is hence neglected.

Moreover, as the Quad model, the ReAL model grounds the estimation of its parameters on

the error rates. To obtain an higher error rate than the ones usually obtained from typical

IAT data, Meissner and Rothermund (2013) used IAT procedures with a response deadline.

All respondents started with the same response deadline (i.e., 750 ms), which was further

adjusted grounding on their actual error rate. Specifically, it was shortened if the error rate

was lower than 30%, and lengthened otherwise. Clearly, this makes the ReAL model ap-

plicable only to specific data set that are either already presenting an adequate error rate or

that have been collected with the response deadline. Moreover, the difference in the admin-

istration procedures of the IATs in Meissner and Rothermund (2013) does not allow for a

fair comparison between the predictive ability of the typical IAT scores and that of the model

parameters obtained from the modified procedure (see Discussion of Study 7 in Meissner &

Rothermund, 2013, for further details).

Finally, also the ReAL model provides only estimates at the sample level, so that its

applicability for the investigation of individual differences is limited.

3.2 Time and Accuracy models

3.2.1 The Diffusion Model

The first application of the Diffusion Model (DM; Ratcliff, 1978) to IAT data can be found

in Klauer et al. (2007). As the multinomial processing tree models presented in previous

sections, the application of the DM to IAT data is aimed at disentangling the contribution of

the process underlying the performance at the IAT. For pursuing this aim, the DM exploits all
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information that can be retrieved from IAT data by mapping accuracy and time responses on

the same metric.

The DM rests on the assumption that the decisions in two-choice tasks (such as the IAT)

are based on processes of serial information accumulation over time. These processes begin

from a starting point that lies between two thresholds, associated with two possible responses.

Once the information accumulation process reaches one of the thresholds, the response as-

sociated to that specific threshold is given. The average rate with which the information is

accumulated over time (i.e., drift rate) does not always terminate at the same time (produc-

ing reaction times distributions) or at the same threshold (producing correct and incorrect

responses).

According to the DM, the decision-making process can be understood by considering four

different components and their respective parameters: (i) the threshold separation (parameter

a), (ii) the location of the starting point (parameter z), (iii) the average rate of information

accumulation (i.e., drift rate, parameter v), and (iv) the non-decision component (parameter

t0)

The amount of information that must be accumulated before one of the two responses is

given is expressed by the a parameter . The a parameter assumes larger values when a high

amount of information needs to be accumulated for giving the response, whereas it assumes

smaller values when not much information is needed for the response. In the former case,

the decision results in slower response times but higher accuracy, while in the latter one, it

results in faster but less accurate responses. As such, the a parameter can be considered as

the speed-accuracy trade-off of the respondents. The speed-accuracy trade-off defines the

respondent’s performance at the IAT, and, once a trade-off is undertaken, it remains constant

throughout the entire administration.

The starting point of information accumulation is expressed by the z parameter. The

location of the starting point affects the information accumulation process. If the starting

point is closer to one of the two threshold, then less information is needed for giving the

response associated to that threshold, generating a bias towards it. The z parameter measures

this specific response bias.
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The direction and the speed of the information accumulation process are expressed by the

v parameter (i.e., drift rate). Drift rate determines both accuracy and speed performance of

the respondents. The meaning of the drift rate can be considered both within and between

respondents. When considered between respondents, it can be interpreted as the between–

respondents differences in the decision-making processes. When considered within respon-

dents and between experimental conditions, the drift rate expresses how the experimental

condition affects the decision-making processes of each respondent. In the IAT case, the

decision-making process is easier in the condition where the evaluative dimension and the

target object with the strongest automatic association share the same response key than in the

opposite condition.

Finally, the decision-making process is also influenced by preparatory operations which

are not directly related to the decision itself, such as the preparatory movements for giving the

response. The t0 parameter accounts for the non-decision component of the decision-making

process.

In the IAT case, the automatic associations between target objects and evaluative dimen-

sions positively affect the average information accumulation process (i.e., drift rate), resulting

in faster and more accurate responses. This is true only for the condition consistent with the

automatic associations. On the contrary, automatic associations negatively affect the drift

rate, hence accuracy and speed performance, in the contrasting condition. The better perfor-

mance usually observed in the compatible condition can be due to the use of the positive/neg-

ative intrinsic valence of the objects stimuli for their categorization. The task-switching cost

from attribute to target is avoided by exploiting the intrinsic value of the attitudes object for

their categorization. As such, the DM allows for speculating that attitudes enter the IAT and

influence the performance through the object stimuli. This explanation is also in line with

what found with the application of the ReAL model (Meissner & Rothermund, 2013).

The application of the DM to IAT data allows for separating processes that are directly

and actively related to the decision process (e.g., drift rate, threshold separation) to those

which are needed during the process but that mostly express preparatory operations (e.g., non

decision component). Moreover, the information retrieved at the stimulus categories level is
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particularly useful to investigate whether and how attitudes and automatic associations are

affecting the performance of the respondents. Finally, the distinct response time distributions

obtained from correct and incorrect responses can be further employed for gaining better

insights on the processes underlying the performance of the respondents.

The application of the DM to IAT data comes with some drawbacks as well. A high

number of incorrect responses is needed for estimating the their response time distributions

for each respondent. Otherwise, the estimates for the distributions of both correct and incor-

rect responses are not reliable. Consequently, respondents with a perfect performance have

to be eliminated from the sample. However, as stated above, the IAT is an easy task, and a

low percentage of incorrect responses is usually observed. It follows that a large number of

respondents would present data that are not suitable for a DM analysis. Another potential

critical issue of the application of the DM to IAT data is that it is applied to each critical IAT

block, namely each associative condition. For instance, in a Coke-Pepsi IAT two different

DMs should be applied, one on the condition in which Coke (Pepsi) and Good (Bad) are

associated, and one on the contrasting condition, where Pepsi (Coke) and Good (Bad) are

associated. The application of separate DMs to each associative condition implies that the

estimates obtained from the application to one critical condition cannot be directly compared

with those obtained from the application of the DM on the opposite critical condition.

The task-switching cost can be inferred from the difference between the drift rate parame-

ters in the two associative conditions. In the condition consistent with respondent’s automat-

ically activated association, the task-switching cost can be prevented by sorting the attitude

objects according to their intrinsic positive or negative evaluation, in line with the recoding

processes observed in Meissner and Rothermund (2013). Conversely, in the contrasting con-

dition, the target objects cannot be sorted according to their intrinsic value anymore. Stimuli

have to be sorted according to their nominal category, hence the task-switching cost from

attribute to target object negatively affects the performance. However, the drift rate is not

able to disentangle the process allowing for the prevention of the task switching cost from the

actual automatic associations.

Finally, the DM is not able to yield the information provided by each individual stimulus
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but only to consider the information provided by the stimulus categories.

3.2.2 The Discrimination-Association Model

The Discrimination-Association Model (DAM; Stefanutti et al., 2013) is a mathematical

model based on the joint modeling of accuracy and time responses specifically designed and

developed for the IAT data.

The DAM assumes that each of the stimuli, irrespective of whether they are object stimuli

or attribute stimuli, contains evidence for each of the four stimulus categories. This implies

that the processing of each stimulus happens in parallel. The processes with which the evi-

dence in favor of each category of stimuli is accumulated when a stimulus is presented can be

conceived as independent Poisson processes. The independent Poisson processes are defined

as counters, and they express the evidence in favor of a specific stimulus category contained

by each process. Since the processing of the stimuli happens in parallel, the counters for all

stimulus categories are activated when a stimulus is presented, and they compete between

each other. Four counters (one for each category of stimuli) are hypothesized, and the one

that wins the competition determines the observed response. For instance, suppose that a

stimulus representing the category Coke in a Coke-Pepsi IAT is presented to a respondent.

When the stimulus is presented, the counters for each of the stimulus categories starts accu-

mulating information for their respective category. If the counters for the categories Good or

Coke win the competition, a correct response is observed in the Coke-Good/Pepsi-Bad con-

dition, with its related response time. If the counter for the category Good activated by the

stimulus Coke wins the competition also in the Pepsi-Good/Coke-Bad condition, an incorrect

response is observed. Conversely, if the counter of the category Coke activated by the stimu-

lus Coke wins the competition, the process ends in a correct response also in this associative

condition.

The DAM decomposes the IAT effect into three distinct processes: (i) stimuli discrimina-

tion (i.e., stimuli representativeness of their own category), (ii) automatic associations (i.e.,

associations between evaluative dimensions and target objects), and (iii) termination criteria
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(i.e., amount of information needed before a response is given). This model results in the

estimation of three parameters, describing the processes into which the IAT effect is decom-

posed. The model parameters are the rates at which evidence is accumulated on each counter

(i.e., stimuli discrimination and automatic association), and the termination criteria. The rates

at which evidence is accumulated on each counter is expressed by the parameter λij , where i

is the counter for each of the four stimulus categories and j is the specific stimulus presented

on the screen.

The stimuli discrimination parameter describes the strength of the association of the stim-

uli with their own category. Specifically, the discrimination rates define the amount of evi-

dence that target (resp. to attribute) categories accrue when target (resp. to attribute) stimuli

are presented. As such, it expresses the ability of the stimuli to represent the category to

which they belong. For instance, stimuli Coke of the Coke-Pepsi IAT are described by two

values of λ, one describing the correct discrimination of the stimuli (i.e., λCoke,Coke) and one

describing the incorrect discrimination of the stimuli (i.e., λOther,Coke). If the stimuli chosen

for representing the target category Coke are prototypical exemplars of the category, the value

of λCoke,Coke is expected to be higher than the value of λOther,Coke.

The automatic association parameter directly derives from the association pattern be-

tween object stimuli and evaluative dimensions. The automatic association parameter regards

the amount of evidence that target (resp. to attribute) categories accrue when attribute (resp.

to target) are presented. The estimation of this parameter depends on the automatic associa-

tion of each respondent. Taking the Coke-Pepsi IAT as an example, if the respondent holds a

preference for Coke, the automatic activation process facilitates the categorization task (i.e.,

high accuracy and fast time responses) in the condition where Coke and Good share the same

response key. Conversely, it impairs the categorization task in the condition where Coke and

Bad share the same response key.

The automatic association parameter can help in disentangling the automatic association

that drives the performance in each associative condition, and consequently, in clarifying

the meaning of the IAT effect. Following the previous example, the automatic association

parameter might highlight an high association between Good and Coke, along with a low
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association between Good and Pepsi and a low association between Pepsi and Bad. As such,

it can be said that the performance is mostly driven by a positive evaluation of Coke, while

Pepsi is associated with neither positive nor negative evaluations.

The termination criteria parameter refers to the amount of evidence that needs to be accu-

mulated before any response is given. The amount of information needed for producing the

correct response in the incompatible blocks (i.e., blocks against the automatically activated

associations of the respondents) is usually larger. Consequently, the termination criteria are

higher in the incompatible condition than in the compatible one. The termination criteria can

hence be interpreted as a combination of task difficulty and individual cautiousness.

The DAM provides useful information on the IAT functioning. Additionally, it overcomes

some of the major issues of the DM, namely the impossibility of obtaining reliable estimates

when few or no errors are made and the separate application of the model to each critical

block. Since the DAM assumes separate processes for correct and incorrect responses, few or

no incorrect responses only affect the estimation of the parameters concerning the processes

leading to incorrect responses, while the parameters concerning the correct responses can

still be reliably estimated. Moreover, the DAM is applied on the entire IAT data set. The

termination criteria are the only parameters that vary across blocks, while in the DM both

the drift rates and the threshold separation vary across blocks.

However, also the DAM presents some shortcomings. Stimuli discrimination provides

important information on functioning of the stimuli and on their representativeness of the

category to which they belong. However, this information is at the level of the stimulus cate-

gory and not at that of the individual stimuli. Having information at the level of the individual

stimuli would not only allow for testing their representativeness but also for delving deeper

on the specific stimuli that drive the IAT effect. Moreover, the way in which termination

criteria have been conceptualized makes difficult to disentangle the respondent’s contribution

from that of the task in determining the observed response. This point is crucial for a better

understanding of the IAT functioning. Specifically, there has to be a clear distinction between

the properties of the task/stimuli and how they affect the performance of the respondents, as

well as their characteristics mostly affected by the task characteristics.
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3.3 Rasch Modeling

The modeling frameworks presented so far provide interesting and useful information on the

processes involved during the performance at the IAT. However, the overlooking of the in-

formation that can be gathered from the individual stimuli used is their major and common

pitfall. As previous studies have pointed out (e.g., Bluemke & Friese, 2006) the characteris-

tics of the stimuli (e.g., their representativeness of the category to which they belong) play a

crucial role in the functioning of the IAT. As such, a modeling framework able to get a de-

tailed information at the level of the individual stimulus would provide a fine-grained analysis

of the IAT functioning based on its single, yet most important, components. By disentangling

the contribution of the characteristics of the respondents from that of the characteristics of

the stimuli, the Rasch model (Rasch, 1960) is able to provide such a fine-grained analysis at

the individual stimulus level.

The Rasch model assumes that the variability of the observed accuracy responses can

be explained by a unique latent variable. Once the effect of this variable is accounted for,

the correlation between the responses should be close to 0 (i.e., local independence). The

observed response is the result of the interplay between the characteristics of the respon-

dents, expressed by an ability parameter β, and item characteristics, expressed by a difficulty

parameter δ. Therefore, the expected responses can be completely explained by these two

parameters, taken to be the manifestations of the latent variable. A more thorough illustration

of the Rasch model is provided in Section 4.1.

In the IAT case, the variability at the level of the observed responses cannot be completely

exhausted by only the respondent ability and the stimulus difficulty. Part of this variability can

be ascribed to the associative conditions in which the stimuli are presented. The Many Facet

Rasch Model (MFRM; Linacre, 1989) extends the Rasch model by allowing other sources

of variability (i.e., facets) to explain the variability at the observed responses. This approach

already proved its usefulness for modeling IAT data across different domains of investigation

(e.g., Anselmi et al., 2011, 2013)

In the MFRM, the associative conditions can be specified as a facet of the model, along
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with the respondents and the stimuli. Therefore, the variability of the observed responses

due to the associative condition is accounted for. The characteristics of the respondents, the

stimuli, and the associative conditions operate in concert to determine the likelihood of a

response.

The MFRM is meant for the estimation of the likelihood of categorical variables, hence it

cannot be directly applied to the response times of the IAT. They have to be discretized into

ordered categories for the application of this model. Consequently, the model results in the

estimation of the probability of giving the response within a time category. Usually, quantiles

are used for the discretization of the continuous time responses. The number of quantiles into

which the response times are divided is an ad-hoc choice made by the researcher.

Let k be a variable describing the discretized scale of the response times, with k ∈

{0, 1, . . . ,m}. The MFRM for the analysis of IAT data takes on the form:

ln

(︃
Ppsck

Ppsc(k−1)

)

)︃
= βp − δs − γc − τk, (3.1)

where Ppsck is the probability that respondent p (with ability βp) would respond to stimulus s

(with difficulty δs) in condition c at speed k. Parameter γc describes the easiness of condition

c, while parameter τk describes the impediment of response k relative to k − 1. Therefore,

the additive effects of the speed of the respondent βp, the speed of the categorization of the

stimulus δs, the easiness of the condition γc, and the impediment of response k rather than

k − 1 define the probability that respondent p gives response k rather than k − 1 to stimulus

s in condition c.

By considering the IAT associative conditions as a facet of the model, it is possible to ob-

tain either condition–specific stimulus estimates or condition–specific respondent estimates.

However, it is not possible to concurrently obtain condition–specific respondent and stim-

ulus estimates because the model would not be identified. The condition–specific stimulus

estimates allow for investigating whether the stimuli show a different functioning between

associative conditions. By computing the difference between the condition–specific stimu-

lus estimates, it is possible to obtain a measure of the bias due to the associative conditions,
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which can be taken as a measure of the contribution of each stimulus to the IAT effect. For

instance, in Anselmi et al. (2011) and (Anselmi et al., 2013) the Good exemplars showed

the highest difference in their condition–specific estimates, hence providing the highest con-

tribution to the IAT effect (i.e., positive primacy effect). Accordingly, the IAT effect was

interpreted as the expression of ingroup preference rather than outgroup derogation in both a

Race IAT and Weight IAT.

The condition–specific respondent estimates allows for investigating the effect of the as-

sociative conditions on the performance of the respondents, which can be taken as a measure

of the IAT effect.

Unfortunately, this approach presents some drawbacks as well. Firstly, the MFRM appli-

cations presented in this section are all based on the discretized time responses. Besides a

potential large loss of information, the discretization process presents an arbitrary component

related to the decision on the number of quantiles to use. Results might change according to

the number of quantiles into which the starting continue variable is divided. Additionally, ac-

curacy responses are not accounted for, and the information that can be retrieved from them is

lost. Since the focus was on the functioning of the stimuli between conditions, the difficulty

of the two conditions was assumed to be the same across respondents. Consequently, it was

not possible to investigate the bias due to the IAT associative conditions at the level of the

respondents. Finally, the fully-crossed structure was not accounted for, even though the extra

variability due to the associative conditions was addressed.

3.4 Common features, advantages, and drawbacks

Depending on the focus of the above-mentioned models, they result in different and useful

information regarding either the functioning of the stimuli (Rasch modeling) or the cognitive

components involved in the performance at the IAT.

With the only exception of the Rasch model, all the modeling frameworks presented in

this chapter pointed out how the performance at the IAT cannot be considered as just the

expression of automatic processes. The contribution of more controlled processes has to be
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taken into account as well. The Rasch modeling is more oriented to the information that

can be yielded from each stimulus, and on the use of this information for gaining a better

understanding on the functioning of the IAT.

The Quad model and the ReAL model provide an interesting disentanglement of the IAT

effect into the controlled and automatic processes. They both point out that the measure ob-

tained from the IAT is not a process-pure measure of implicit associations, but it also include

a part of controlled processes which need to be taken into account for making meaningful

inferences. However, they presented major shortcomings, starting from the exclusive use of

the accuracy responses for estimating the model parameters. As already stated, the IAT is

an easy task, and the observed error rates are usually not high enough to allow for a reliable

estimation of the model parameters. Consequently, some precautions have to be taken for

performing analysis on IAT data under these frameworks. For instance, the ReAL model in-

troduced a rtw that automatically adjust to the performance of each individual to increase the

error rates. This expedient makes the parameters of the ReAL model obtained with the mod-

ified version of the IAT not directly comparable with the classic IAT scores obtained from

traditional IATs. Moreover, to guarantee for a high error rates for each combination of stim-

uli in associative conditions, the analyses for the Quad and the ReAL models are performed

at the sample level or at the stimulus categories level. However, the IAT was specifically

designed for investigating individual differences. As such, obtaining parameters that pro-

vide only a general information about the sample performance might not be in line with the

original purpose of the measure itself.

Both the Quad model and the ReAL model posit parameters describing the stimuli (i.e.,

the D, L parameters in the Quad model and the ReAL model, respectively) and parameters

describing the automatic associations (i.e., the AC parameters and A parameters in the Quad

model and the ReAL model, respectively). However, the parameters of the Quad model and

those of the ReAL model describes the two components at the level of the entire IAT. The

DAM overcomes this issue by providing a more detailed analysis at the level of the stimulus

categories.

The ReAL model, the DM, and the DAM highlighted how the categorization task can
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be simplified by exploiting the positive and negative valence triggered by a target stimulus.

Both the DAM and the ReAL model postulate the activation of different stimulus categories

when the stimulus belonging to a category is presented. The DAM and the ReAL models

also differentiate themselves according to the direction they assume for the activation of

the recoding strategy. The activation of the evaluative dimension when a target stimulus is

presented, and not the other way around, is the working assumption on which the ReAL

model is based. Consequently, only target objects can be recoded and categorized according

to their positive/negative value, while the same cannot be done for the evaluative attributes.

The DAM goes beyond because it does not make such a strong assumption on the activation

of the automatic associations of the stimuli. According to the DAM, each stimulus contains

information regarding the other categories. As such, each target object can accrue information

regarding both the evaluative dimensions and the opposite target object. This holds true

also for the stimuli representing the evaluative dimensions. Each evaluative attribute can

accrue information regarding the categories of both target objects and the opposite evaluative

dimension. This makes the DAM more flexible than the ReAL model. Moreover, it allows

for empirically testing the basic assumption on which the ReAL model is based.

The DM does not explicitly mention a recoding process, but it refers to a task-switching

cost. The difference in the drift rates between associative conditions indicates that the cate-

gorization task is easier in one condition than the other. Klauer et al. (2007) speculate that

the facilitation effect of the associative condition can be attributed to the categorization of the

target stimuli according to their positive/negative valence. By doing so, the task-switching

cost from attribute to target is prevented, resulting in a better performance. This strategy

facilitates the categorization task in the condition consistent with the automatic association,

while it hinders it in the condition against the automatic association. The facilitation (hin-

dering) effect of the task-switching cost can be seen in the drift-rates difference between the

conditions. Similarly to the ReAL model, the categorization task is simplified only by ex-

ploiting the intrinsic values of the target objects and not the other way around. In the DM,

this is consistent with the assumption of the serial processing of the stimuli. Additionally,

Klauer et al. (2007) clearly state that attitudes influence the performance at the IAT through
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the target objects. An issue of the DM is that it cannot disentangle which part of the perfor-

mance is driven by the controlled process of recoding, and which is actually ascribable to the

activation of automatic associations.

Another potential critical aspect is the complexity of these models, specifically of the

DM and the DAM. While both these models provide a more complete information on the

IAT effect, hence a better understanding of the measure itself, their understanding is not

straightforward. To gain a deep understanding of theses models, and on the clear advan-

tages related to their use, users are required to have at least a basic knowledge on random

walk processes (DM) or Poisson processes (DAM). Unfortunately, this kind of expertise is

not widespread among researchers using the IAT. This might prevent them from using these

models and discard them in favor of a simpler, but less sound, approach.

One common drawback of these models is that they cannot provide any information at

the stimulus level. However, the Rasch model applications stressed the importance and use-

fulness of having such an information not just for the investigation of the functioning of the

stimuli itself, but also for a better understanding of the IAT measure. On the other hand, the

applications of the Rasch model to IAT data that have been attempted so far are based on only

the (discretized) time responses. As such, the information from both the accuracy responses

and the continuous nature of time responses is lost.

The common and most outstanding drawback of these models is that none of them ac-

counts for the fully-crossed structure of the IAT data described in Section 1.4. Consequently,

the sources of random variability in the data are left free to bias the estimation of the param-

eters.
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Chapter 4

Rasch model, Log-normal model, and Linear Mixed-

Effects Models for the analysis of the IAT

This chapter is organized in two main sections. In the first section, the Rasch model and

the log-normal model are briefly outlined. Then, the similarities between the Rasch model

and the Generalized Linear (Mixed-Effects) model are described. The procedure for the

estimation of the Rasch model parameters from Generalized Linear Mixed-Effects Models

(GLMMs) with a logit link function is illustrated, as well as the procedure for estimating the

log-normal model parameters from Linear Mixed-Effects Models (LMMs).

In the second section, the random structures of the GLMMs and the LMMs used for

estimating the Rasch model and the log-normal model parameters from the IAT accuracy

and log-time responses are presented. Three random structures for the accuracy responses

(Rasch model) and three random structures for the log-time responses (log-normal model)

are introduced. The first one is the simplest one, and it is taken as the Null model against

which the other models are compared. The second and third models have the same level

of complexity. They differentiate each other according to the random factor on which the

multidimensionality of the associative condition is allowed, either the respondents (Model

2) or the stimuli (Model 3). The best fitting model, and consequently the parameters of the

Rasch and log-normal models that can be estimated, depend on the variability in the observed

data.

For illustration purposes, the Rasch model is initially presented with the typical notation

for its parameters, namely β, indicating the persons ability, and δ, indicating the item diffi-

culty. However, since also the item parameter of the log-normal model is indicated with δ, a

79
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different notation for the Rasch model is employed throughout the thesis. The new notation

of the Rasch model resembles the one typically used in Item Response Theory to denote the

respondent and stimulus parameter, where the former ones are indicated with the Greek letter

θ and the latter ones with the Latin letter b. The respondents are indicated with the subscript

p (p ∈ {1, . . . , P}) and the stimuli/items with the subscript s (s ∈ {1, . . . , S}). In the specifi-

cation of Linear Mixed-Effects Models, the single observation on each respondent p on each

stimulus s in each associative condition c (c ∈ {1, . . . , C}) is indicated as i (i ∈ {1, . . . , I}).

4.1 Modeling dichotomous responses

According to Item Response Theory (IRT) models, the observed response to an item can

be explained by a common characteristic shared by both the person and the item, which

lies on the same latent trait (DeMars, 2010). Consequently, IRT scoring accounts for the

moderation of the characteristics of the item in explaining the relationship between the latent

trait of the person (i.e., the psychological construct of interest often identified with θ) and the

observed response. IRT models can be distinguished according to the number of parameters

used for describing the characteristics of the item (see e.g., DeMars, 2010). The functioning

of each item can be depicted by means of the Item Characteristic Curve (ICC). The ICC

is a non-linear (i.e., logistic) monotone function that indicates the probability of giving a

correct response to an item given the respondent’s ability and the characteristics of the item.

The probability of giving a correct response (P (x = 1)) is reported on the y-axis. The

respondent’s ability θ is reported on the x-axis.

The simplest model is the 1-Parameter Logistic model (1PL, Equation 4.1). The 1PL

model and the Rasch model (Rasch, 1960) are mathematically equivalent. According to the

1PL model, the probability of a correct response to an item is a function of the respondent’s

characteristic θ and an item impediment characteristic, defined as difficulty, b:

P (xps = 1|θp, bs) =
exp(θp − bs)

1 + exp(θp − bs)
. (4.1)
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The difficulty b is defined as the amount of latent trait θ needed by a person to have a higher

probability of choosing the correct response over the incorrect response. The ICCs of three

items with different levels of difficulty b are represented in Figure 4.1a. Take for example

a respondent with an ability of 0. This respondent will have a 50% chance of responding

correctly to the item represented by the solid line. The same respondent will have about a

90% chance of endorsing the correct response for the item represented by the dotted line,

which requires an ability level below the respondent’s ability (about −2) for having a 50%

chance of a correct response. Conversely, since the item represented by the dashed line

requires a level of ability higher than that of the respondent (about +2) for having a 50%

chance of a correct response, this respondent will have about a 10% chance of endorsing the

correct response.

The 2PL model (Equation 4.2) (Birnbaum, 1968) also considers the influence of each item

discrimination power (parameter a) in explaining the relationship between the respondent

ability and the observed response:

P (xps = 1|θp, bs, as) =
exp[as(θp − bs)]

1 + exp[as(θp − bs)]
. (4.2)

The a parameter changes the relationship between the respondent parameter θ and the item

difficulty parameter b. The larger the value of as, the lower the overlap between the distribu-

tions of the response variables of two respondents with different values of θ. In this sense,

parameter as can be interpreted as the discriminating power of the item. Items that show

large values of as are best able to discriminate between respondents with different levels of θ.

The ICCs of three items with the same level of difficulty b but different discriminating power

are reported in Figure 4.1b. The slopes of the items represented by the dotted and dashed

lines are steeper than the slope of the item represented with the solid line, which presents a

really smooth slope. The steepness of the slopes represents the discriminating power as of

the item, and the steepest the slope of the ICC, the highest the discriminating power of the

item. Baker and Kim (2017) introduced intervals for interpreting the discriminating power

of the item. Specifically, the items with a value of a lower than 0.64 are considered to have
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a low discriminating power, items with a value of a between 0.65 and 1.34 show a good

discriminating power, and items with a value of a greater than 1.34 are considered to have a

high discriminating power. The item represented with the solid line has a low discriminating

power (a = 0.20), while the dotted and dashed items have a good (a = 0.70) and a high

discriminating power (a = 1.70).

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
(x

 =
 1

)

(a) 1PL Model.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
(x

 =
 1

)

(b) 2PL Model.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
(x

 =
 1

)

(c) 3PL Model.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
(x

 =
 1

)

(d) 4PL Model.

Figure 4.1: Item Characteristics Curves (ICCs) obtained with different IRT models.

As it can be seen in Figures 4.1a and 4.1b, the ICCs of the items approach 0 (for low

levels of θ) and 1 (for high levels of θ), regardless of the parameters defining the character-

istics of the items. This is because the 1PL and the 2PL models assume a lower asymptote

at 0 (i.e., the value taken by the function as θ approaches −∞) and an upper asymptote at 1

(i.e., the value taken by the function as θ approaches +∞). A lower asymptote at 0 is also

assumed by the Rasch model. The assumption of the lower asymptote approaching zero im-
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plies that respondents with extremely low levels of ability have an extremely low probability

of endorsing the correct response. Conversely, assuming an upper asymptote of 1 implies

that respondents with extremely high levels of ability have an extremely high probability of

endorsing the correct response. However, there might be cases in which respondents with

an extremely low level of ability choose the right response out of luck (lucky guess), or that

respondents with an extremely high level of ability choose the incorrect response out of dis-

traction (careless error). In the first case, the lower asymptote cannot approach zero anymore,

since even respondents with a level of ability that approaches −∞ have a probability of pro-

viding the correct response higher than 0. In the latter one, the upper asymptote has to be

moved downward because even the respondents with a level of ability that approaches +∞

have a probability of correctly endorsing the correct response lower than 1.

The 3PL and 4PL models have been introduced for modeling these occurrences, respec-

tively.

The 3PL model (Equation 4.3) (Lord, 1980) adds a third parameter (c) to explain the

response behavior:

P (xps = 1|θp, bs, as, cs) = cs + (1− cs)
exp[as(θp − bs)]

1 + exp[as(θp − bs)]
, (4.3)

where cs is the probability that a respondent with a low level of ability guesses the correct re-

sponse. The ICCs of three items with the same levels of difficulty and the same discriminating

power are reported in Figure 4.1c. As it can be immediately noted, the lower asymptote does

not approach 0 anymore. The cs parameter moves upward the lower asymptote, and it rep-

resents the probability that a respondent with an extremely low ability will correctly answer

an item with difficulty bs. The solid line item presents a low guessing parameter, according

to which even respondents with an ability level below the item difficulty have about a 10%

chance of endorsing the correct response. The most problematic item is the one represented

by the dashed line. In this case, even respondents with a level of ability extremely lower than

the item difficulty have a probability of endorsing the correct response as large as 40%.

The 4PL model (Equation 4.4) (Barton & Lord, 1981) adds a fourth item parameter (e) to
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describe the response behavior:

P (xps = 1|θp, bs, as, cs, es) = cs + (es − cs)
exp[as(θp − bs)]

1 + exp[as(θp − bs)]
, (4.4)

where es represents the probability that a respondent with an extremely high level of ability

will incorrectly answer an easy item (i.e., careless error). The ICCs of three items with

the same difficulty, discriminating power, and guessing (set at 0 for illustration purpose) are

depicted in Figure 4.1d. In this case, it can be noted that the ICCs of the items does not

approach 1 anymore: The upper asymptote is defined by the parameter e. The ICC of the

solid line item indicates that even for respondents with an extremely high level of ability, the

probability of endorsing the correct response is about 90%.

4.1.1 The Rasch model

The 1PL model and the Rasch model are mathematically equivalent. Only the notational

system for their parameters is different. In the Rasch model, the item parameter is described

by the Greek letter δ and the person’s parameter is described by β. In this section, the typical

notation of the Rasch model is used. However, in Section 4.4 the notation typical of IRT

models is used to distinguish the Rasch model parameter estimates from the estimates of the

log-normal model and those of the GLMMs.

The starting point for the development of the dichotomous Rasch model (Rasch, 1960)

involves the engagement of a person p on an item s to produce a response xps (Andrich

& Marais, 2019). The engagement between the person and the item results from a single

variable that is a common property shared by both the person and the item. The item variable

is supposed to trigger the same person variable in all respondents. For instance, for assessing

mathematics proficiency the items must contain some degree of mathematics ability. To give

the correct response, persons must engage with the mathematics proficiency required by the

item.

The engagement between the person and the item results in the observed responses xps,

which can be represented in a P (p ∈ {1, . . . , P}, persons) × items S (s ∈ {1, . . . , S}, items)
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response matrix X (Table 4.1).

Table 4.1
Response matrix P × S, starting point for the estimation of the Rasch model.

Items
1 2 . . . k . . . s

Persons

1 x11 x12 . . . x1k . . . x1k r1
2 x21 x22 . . . x2k . . . x2k r2
... . . . . . . . . . . . . . . . . . .

...
v xv1 xv2 . . . xvk . . . xvk rv
... . . . . . . . . . . . . . . . . . .

...
p xp1 xp2 . . . xpk . . . xps rp

s1 s2 . . . sk . . . ss

Each cell represents the response of person p to item s. The response is a dichotomous

response that can take only the values xps = 0 (incorrect response) or xps = 1 (correct

response).

The across-columns sum rp (i.e., number-correct) represents the total score of each re-

spondent (i.e., the total number of correct responses given by the respondent), regardless of

the specific pattern with which the correct responses were given. The number-correct is a

sufficient statistic for estimating the person’s parameter β (Wright & Stone, 1979; Wright,

1997). Two respondents might have the same number-correct obtained with different pat-

terns of correct responses. Since the specific pattern is not important for the determination

of the number-correct, the two respondents with the same number-correct obtained with dif-

ferent patterns will have the same person estimate β. This feature distinguishes the Rasch

model from other IRT models. For instance, in the 2PL model two respondents with the same

number-correct might not have the same level of θ because the relationship between the item

and the respondent’s parameters is moderated by the discriminating power of the item as,

hence the specific response pattern is important for the estimation of the person parameter.

The across-rows sum ss (i.e., proportion-correct) represents the total score of each item

(i.e., number of correct responses obtained by each item), regardless of the specific pattern

with which the responses were obtained. The proportion-correct is a sufficient statistic for

estimating the item difficulty parameter δ. Two items might have the same proportion-correct
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resulting from different pattern of responses, but since the specific pattern is not relevant for

the determination of the proportion-correct, the two items will have the same item estimate

δ.

The observed response in each cell xps hence depends on both persons’ characteristics

and items characteristics. The characteristics of both persons and stimuli can be located on

a specific point of the latent trait, which is the common variable they share. The location of

each respondent p on the latent trait is described by the parameter βp. The location of each

stimulus on the latent trait is described by parameter the δs. While the observed response for

each combination of p× s can take only the value 0 and 1, the parameters βp and δs can take

any real value from −∞ to +∞.

The great advantage of the Rasch model and of IRT models in general is represented by

the person and item characteristics located on the same latent trait, which allows for directly

compare the person and item estimates. A measure of the distance between the person’s

location and the item location can hence be obtained. Therefore, it is possible to predict the

probability that a person with a certain level of β has of correctly respond to an item with a

certain level of δ. Since the observed response is a function of the respondent and stimulus

characteristics located on the same latent trait, it can be posited that a respondent would

correctly respond to the stimuli located below his/her level of ability βp (i.e., the probability

of a correct response is higher than 50%):

If (βp − δs) > 0 thenP (xps = 1) > 0.50. (4.5)

Also the opposite holds true. When the location of the item is above the location of the

person, the probability that a correct response is given is below 50%:

If (βp − δs) < 0 thenP (xps = 1) < 0.50. (4.6)

As Equations 4.5 and 4.6 clearly illustrate, the probability of a correct response depends

on the difference between the respondent and item parameters. However, the probability
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of a correct response is bounded between 0 and 1, while the parameters, and hence their

difference, can vary between −∞ and +∞. The difference between the respondent and item

parameters can be forced to only positive numbers by using the exponential function:

0 ≤ exp(βp − δs) < +∞ (4.7)

Still, in Equation 4.7 the difference between the person ability and the item difficulty is

allowed to take any positive value from 0 to +∞. As such, it cannot be used to predict

a probability varying between 0 and 1. To allow for the prediction of the probability of a

correct response given respondent ability and item difficulty, the difference between their

parameters need to be mapped on the same scale of the probability. Thus, Equation 4.7 can

be standardized by 1+ exp(βp − δs), so that the probability for a correct response for a given

βp and a given δs can be expressed as:

P (xps = 1|βp, δs) =
exp(βp − δs)

1 + exp(βp − δs)
, (4.8)

which is the typical formulation of the Rasch model for the probability of a correct response.

The Rasch model was originally formulated in terms of odds and log-odds. The odds are

the ratio between the probability of success (correct response) and the probability of failure

(incorrect response). The log-odds are the logarithm of the odds. The Rasch model assumes

a logistic probability function, and the measurement units of the respondent parameters, the

item parameters, and their difference, are the logits. Equation 4.8 can be rewritten in terms

of log-odds as:

βp − δs = ln
(︃

P (x = 1|βp, δs)

1− P (x = 1|βp, δs)

)︃
. (4.9)

By applying the properties of the logarithms to Equation 4.8, the Rasch model can be rewrit-

ten as:

P (xps = 1|βp, δs) =
1

exp(δs − θp)
. (4.10)

Regardless of the specific equation used for expressing the Rasch model, the only thing that
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matters for the estimation of the expected probabilities is the difference between βp and δs.

This difference expresses the distance between the location of the respondent p from the

location of the stimulus s on the latent trait. Therefore, the probability of a correct (incorrect)

response changes according to the distance between the respondent and item locations. The

probability of a correct response is 50% when the respondent location is equal to the item

location. The variance for the expected probabilities of the responses when the locations of

the respondent and the stimulus correspond is maximized, because the probability of giving

the correct response is equal to the probability of giving the incorrect response (P (xps =

1) = P (xps = 0) = 0.50).

The more the location of a respondent on the latent trait is above the location of the item,

the higher the probability of observing a correct response (see Equation 4.5). Similarly, the

less the distance between the location of the respondent and that of the item on the latent trait,

the lower the probability of observing a correct response. Also the opposite holds true. The

more the location of the respondent is below the item location, the higher the probability of an

incorrect response (see Equation 4.6), and, conversely, the less the location of the respondent

is below the location of the item, the lower the probability of an incorrect response. The

relationship between the respondent parameter and the item parameter defines the cumulative

nature of the Rasch model.

The Rasch model is based on three main assumptions, namely linearity of the scores,

comparison invariance, and local independence. These assumptions are briefly outlined in

the following paragraphs, with a specific focus on conditional independence and on the con-

sequences of its violation.

Linearity of the scores. The linearity of the scores is obtained with the logarithm trans-

formation of the odds. By applying this transformation, the person parameters and the item

parameters are placed on the same continuous latent trait. The logarithm transformation of

the odds defines the measurement units of the latent trait (i.e., the logits), which allow for

interpreting the scores on an interval scale.

The linear transformation of the relationship between the respondent and stimulus param-
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eters allows for setting the lowest parameter observed equal to 0, without losing the original

relationship between the estimates. Consequently, comparison invariance (described in the

following paragraph) assumption is satisfied.

Comparison invariance. The comparison between any two persons is independent from

the set of items on which the comparison is based, as well as independent from the compari-

son between any other two persons. The same holds for the items. The comparison between

any two items is independent from the respondents on which the comparison in made, as well

as from the comparison between any other two persons.

The comparisons are invariant in the sense that the comparison between the persons only

depends on the ability parameters of those two persons, and the comparison between the

items only depends on the items parameters.

Local independence. According to the Rasch model, a person with a level of ability β

greater than the item difficulty δ has a greater probability of responding correctly than incor-

rectly to that item. Conversely, a person with a level of ability β lower than the item difficulty

δ has a higher probability of responding incorrectly than correctly to that item. As such,

the variability between the item responses can be explained in terms of the person ability β,

which can be considered as the source of general dependence between the items. Once the

effect of the person ability is accounted for, any other relationship between the items should

disappear. The potential of the person parameters β to explain all the variability between the

responses is called local independence (Andrich & Marais, 2019), according to which once

the effect of the person parameter is accounted for, any other relationship between the item

disappears.

The statistical independence of the responses implies that the probability of correctly

responding to different items is equal to the product of the probabilities of answering each of

them correctly. The local independence of the responses can be formalized as:

P (X) =
∏︂
p

∏︂
s

P (xps), (4.11)
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where X is the P × S matrix of the responses.

The violation of the assumption of local independence can happen in two main instances,

either by involving multidimensionality of the latent trait of the respondents or response de-

pendence. The consequences of the local independence violation due to either multidimen-

sionality or response dependence move in opposite directions but they both result in less

reliable estimates of the parameters and, consequently, in a less accurate prediction of the

probability of observing a correct response given respondent ability and item difficulty.

Unidimensionality posits that the item responses can be explained by considering only

one latent trait dimension, shared by both the respondents and the items. Unidimensionality

is the basic underlying assumption of the Rasch model. Conversely, multidimensionality

refers to those cases in which there are unexpected person’s parameters other than β involved

in the responses to the items.

Multidimensionality is indeed a property of many different scales used for psychological

assessment. For instance, the Big Five Questionnaire (Caprara et al., 1993) is a questionnaire

for the assessment of the Big Five personality traits, composed of different sub-scales. The

items in each of the 5 sub-scales are aimed at assessing one of the 5 personality traits posited

by the Big Five theory (i.e., agreeableness, extroversion, openness to experience, neuroticism,

conscientiousness). The items can be grouped together according to the personality trait they

aim for. As such, they show a between–sub-scale variability which cannot be explained by

only one person’s parameter β. Multidimensionality can also raise from stimuli linked by

common attributes such as a common item stem, common stimulus materials, or common

item structures (Andrich & Marais, 2019). Consequently, stimuli will display a variability

due to other characteristics that cannot be explained just in terms of ability parameters β.

Response dependence (i.e., for a fixed person, hence for a fixed level of ability β, the

response to an item might depend on the response to a previous item; Andrich & Marais,

2019) violates the assumption of local independence as expressed in Equation 4.11. Since

the responses to the items share other sources of variability beyond respondent ability, they

cannot be considered as independent events anymore. Consequently, the probability that each

item has of getting a correct response cannot be multiplied with the probability of getting a
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correct response of another item.

Response dependence might emerge in at least two instances. One case might be when

the response given to an item is used as a clue for responding to subsequent items. Response

dependence might also arise during the performance at computerized task, when the response

to an item leaves a carry-over effect on the response to the subsequent item (Westfall et

al., 2014). In this instance, the variability at the item level is affected by new sources of

variability, mostly composed of error variance.

The violation of the assumption of local independence affects the fit of the data to the

model (Andrich & Marais, 2019), and produces unreliable estimate of the parameters (e.g.,

Barr et al., 2013; Judd et al., 2012). When local dependence is due to multidimensionality

of the person latent trait, extra sources of random noise are added to the data. The error

variance is hence increased, producing less accurate and reliable predictions. When local

dependence is due to response dependence, the similarity of the responses of persons across

items is higher than in conditions of no response dependence. This leads to a decrease in the

error variability. As such, the probabilistic nature of the Rasch model is lost in favor of a

more deterministic one, and responses can be explained with a Guttman-like process.

4.2 Modeling time responses

By modeling response times within an IRT approach, an interaction between the parameters

defining the person accuracy and the time responses is implicitly assumed. This is nothing

else than the speed-accuracy trade-off also reported in previous analysis of the IAT data (e.g.,

Klauer et al., 2007).

Traditionally, in IRT modeling the speed-accuracy trade-off has been expressed by adopt-

ing a regression parameter for the ability of the respondents on their response times. Consis-

tently with IRT models on accuracy responses, the contribution of the items is fundamental

in determining the observed time responses and it is commonly assumed that more difficult

items require for more time to get a response. As such, item parameters are needed to describe

the time absorbing power of the item (van der Linden, 2006).
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4.2.1 The log-normal model

A log-normal model for the analysis of the response times to a test has been introduced by

van der Linden (2006). The log-normal model is part of a hierarchical model for the modeling

of accuracy and time responses in an IRT framework (van der Linden, 2009). According to

van der Linden (2006, 2009), the models for the accuracy responses (i.e., any of the IRT

models presented in the previous section) and those for the time responses can be employed

individually for distinct analysis of the accuracy and time responses to a test. The advantage

of using the hierarchical approach in van der Linden (2009) is that the relationship between

the parameters of the IRT model and the time parameters can be studied and understood at a

second (combined) level of modeling.

As its name suggests, the log-normal model assumes a normal density distribution for the

logarithm of the time responses. The decision to use the log-normal family can be traced

to its good fit to the observed data in previous studies (e.g., Thissen, 1983; van der Linden,

2006). More trivially, it comes natural to model with a normal distribution (defined over the

entire real continuum) the log transformation of a variable that is a non-negative variable by

definition (the response times) (van der Linden, 2006).

The structure of the original formulation of the log-normal model is analogous to the

one of the 2PL IRT model in Equation 4.2 for mainly three reasons. First, both the 2PL

and the log-normal models impose the same structure on the mean of the distribution of the

binary response variable and on the mean of the distribution of the continuous variable, re-

spectively. In both cases, the mean is represented by the difference between the parameters

of the respondent and those of the item, moving in opposite directions. Second, both models

assume a parameter that changes the relationship between the item and respondent parame-

ters, namely a discrimination parameter. Further details on the effect and on the interpretation

of the discrimination parameter on the time responses are illustrated after the mathematical

specification of the log-normal model. Finally, given the nature of the distribution of the

response times (it is bounded at 0), the log-normal model does not need the definition of a

lower asymptote (i.e., the guessing parameter of the 3PL model in Equation 4.3).
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Let t be the realization of a random variable T and tps the response time of a respondent p

to an item s. The log-normal model assumes a normal density distribution of the log-response

times as follows:

f(tps|τp, δs) =
αs

tps
√
2π

exp

{︃
−1

2
[αs(ln tps − (δs − τp))]

2

}︃
. (4.12)

As in IRT models, both the respondent and stimulus parameters τp and δs are allowed to vary

between −∞ and +∞, and are located on the same latent trait. Although the sign of the

person parameter τp is reversed, the mean of the distribution of Equation 4.12 resembles the

one of the 2PL in Equation 4.2. The change in the sign of the respondent parameter τp allows

for interpreting the parameter as a speed parameter, according to which, the larger the value

of τp, the faster the responses given across items (i.e., the respondent tends to spend less time

on the items). Parameter δs describes the time intensity (or time consumingness) of an item,

which is the time the stimulus requires to be responded. The larger the value of δs, the higher

the amount of time respondents need to give the response. Parameter α (i.e., the reciprocal

of the standard deviation of the normal distribution) is the discrimination parameter of the

model. An high value of αs means less dispersion of the log-response time distribution on

item s. Consequently, it can be said that the item has a better discrimintating ability between

different respondents with different levels of speed. Parameter αs affects the relationship

between the respondent speed τp and the item time intensity δs parameters, similarly to what

happens when parameter as changes in the 2PL model. If the value of αs increases, the

distributions of the log-time responses for any two values of the speed parameter show less

overlap.

The 1PL model in Equation 4.1 can be considered as a constrained model deriving from

the 2PL model in Equation 4.2. The constraint is imposed on the discrimination parameter

a, which is forced to be equal across all items (1PL, Rasch model). A similar reasoning can

be done for the log-normal model, by forcing αs to be equal for all items s (αs = α for

all s, s ∈ {1, . . . S}). This constraint results in a parametrization of the log-time responses

similar to the 1PL/Rasch model parametrization of the accuracy responses. In the empirical
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application in van der Linden (2006), both a non-constrained and a constrained version of the

log-normal model were tested in terms of goodness of fit to the data. The normal analogs of

the non-constrained and constrained models were tested as well. The normal models were

the ones showing the worst goodness-of-fit, while constraining α to be equal across all items

did not affect the goodness-of-fit of the log-normal models.

4.3 Linear Mixed-Effects Models

As illustrated in the previous sections, an IRT (or Rasch) approach for modeling both accu-

racy and time responses provides a detailed information on the parameters that determine the

accuracy and time responses.

The use of a log-normal model can overcome the issues related to the discretization of

the response times for the application of the Many Facet Rasch Model in Section 3.3. The

use of a separate model for accuracy responses within an IRT or Rasch framework allows

for obtaining useful and detailed information from accuracy data as well. Importantly, the

accuracy and log-time models present a similar parametrization of the data. Potentially, the

estimates obtained from the two models can be combined at a second level of modeling by

using a hierarchical approach as that illustrated in van der Linden (2009).

Despite this approach sounds promising, it cannot account for the fully-crossed design of

the IAT data and its related sources of dependency. As thoroughly illustrated in the introduc-

tion (see Section 1.4), the fully-crossed design of the IAT comes with several sources of vari-

ability at different levels. These sources of variability generate dependencies at the level of

the single observations that violate the assumption of conditional independence. Conditional

independence is not only a necessary assumption for the application of the Rasch model, but

a basic assumption needed for obtaining reliable results with any statistical analysis. Violat-

ing the assumption of conditional independence brings to biased parameter estimates which

can in turn lead to an inflated probability of committing Type I error or to an underestima-

tion of the importance of the experimental conditions (Barr et al., 2013; Judd et al., 2012;

McCullagh & Nelder, 1989).
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Linear Mixed Effects models (LMMs) are the most straightforward way to deal with this

data structure. Moreover, LMMs allow for concurrently considering both the respondents

and the stimuli as random factors with the specification of the appropriate random structure.

As such, the issues concerning the decision to follow either a by-participant approach or a

by-stimulus approach for performing the analyses is overcome.

The specification of the random structure makes possible to decompose the error variance

into different levels, which corresponds to the levels where the uncontrolled sources of ran-

dom variation can be reasonably found (Doran et al., 2007). These levels can be understood

as the random effects of the model, which reflect the assumptions on the structure of depen-

dency created by the random variability at different levels. As such, the multilevel structure

of the data is accounted for (Barr et al., 2013).

LMMs can be applied to both continuous data, such as the log-transformation of the re-

sponse times, and to dichotomous responses. In the latter case, a Generalized Linear Mixed-

Effects Model (GLMMs) is needed, with the appropriate link function expressing the rela-

tionship between the linear combination of the predictors (i.e., the linear component of the

model) and the observed response.

4.3.1 Generalized Linear Mixed-Effects Model and Rasch Model

In a Generalized Linear Model (GLM), the linear predictors are not directly related to the ob-

served response, and they need to be linked together with a specific function (i.e., link func-

tion). The type of link function depends on the nature of the observed variable (McCullagh

& Nelder, 1989).

For the illustration of the structure of the GLM, and of its expansion to include random

effects, we focus on the case of binomial responses xps ∈ {0, 1}, describing the accuracy

responses at the IAT.

The linear combination of the predictors is defined by the model matrix X , expressing

the form of the model, and it determines the linear component of the model. The linear

component is defined for each cell of the P × S X matrix, and it is denoted with ηps.
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The natural link function g that relates the observed binomial responses with the linear

component of the model ηps is the logit (the logarithm of the odds, McCullagh & Nelder,

1989), and it yields a probability value µps:

ηps = logit(µps) = ln

(︃
µps

1− µps

)︃
, (4.13)

where µps is the probability of a correct response associated to each observed response xps.

Each link function is an invertible function. The inverse of the logit link function is

expressed as:

µps = logit−1(ηps) =
1

1 + exp(−ηps)
. (4.14)

The structure of the inverse logit link in Equation 4.14 can be equated to the Rasch formu-

lation in Equation 4.10. As such, a Rasch parametrization of the data by using a GLM on

binomial responses with a logit link function can be obtained (De Boeck et al., 2011; Doran

et al., 2007; Gelman & Hill, 2007).

From now on, to distinguish the parameters of the Rasch model from the parameters

obtained with the LMMs the former ones will be denoted with θp and bs, indicating the

respondent and stimulus parameters, respectively.

When there are reasons to believe that there are sources of variability generating depen-

dencies between the observations, such as in the IAT case, random effects addressing the

uncontrolled random variability should be included in the model matrix of the linear com-

ponent. By doing so, the error variance is partitioned in different levels as defined by the

random effects. The partitioning of the error variance into specific effects makes the sources

of error variance controllable and accountable for (Doran et al., 2007).

The X matrix that defines the linear component of the GLM needs to be extended to

include the random factors. The linear component hence takes on the form:

η = Xβ +Zd, (4.15)

where β indicates the coefficients for the fixed effects (intercepts and slopes), X is the model
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matrix of the fixed effects β, Z is the P × Q matrix of the random effects (i.e., Q is the

dimension of the random effects vector), and d is the vector of the random effects.

The dimension Q of d is defined by the number of levels of each random factor, and their

combinations. For instance, if respondents are considered as random factors, the dimension

Q of the random effects vector will have as many levels as the number of respondents. Con-

sequently, the dimension of d can be potentially very large (Doran et al., 2007). The distri-

bution of the random effects is estimated as a multivariate normal distribution (i.e., MVN )

with mean 0 and a Q × Q variance-covariance matrix Σ, which is determined by a single

vector of parameters Γ (Doran et al., 2007). The dimension of Γ is usually rather small, and

its size is determined by the number of random factors specified in the model, regardless of

the number of levels they include. For instance, consider a model in which the respondents

variability, the items variability, and the items variability in three different conditions are

accounted for. In this model, five random factors are considered and their related random

effects are specified. Specifically, a random effect for the respondents variability, one for the

items variability, and one allowing for the multidimensionality of the stimuli variability in

the three conditions are specified. The dimension of the vector parameter Γ for this model is

5, and it remains 5, regardless of the number of respondents or items used.

The objective of LMMs is to estimate the parameters of the fixed effects as defined in

vector β and the parameters of the random effects as defined in vector Γ. Consequently, the

parameters estimated for the random factors are not the parameters associated to each level

of each factor, but the variances of the populations from which the random factors are drawn.

Since d does not directly refer to population parameters is denoted with a Latin letter instead

of a Greek one. Nonetheless, a measure for each level of each random factor is obtained in

the form of conditional modes, which are the values maximizing the conditional density of

the random effects given the vectors of fixed and random parameters and the observed data

(Doran et al., 2007). The conditional modes describing the deviation of each random factor

from the fixed factors are meta-parameters (Pastore, 2015), and are usually referred to as Best

Linear Unbiased Predictors (BLUP, Pinheiro & Bates, 2006).

In the typical formulation of the Rasch model, the respondent and stimulus parameters
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move in opposite directions. However, when the respondent and stimulus parameters of the

Rasch model are obtained by using the GLMMs, their estimates move in the same direction,

hence resulting in an additive effect. The item parameter bs can no longer be interpreted as an

impediment property of the stimulus (difficulty) but it should be interpreted as a facilitation

property of the stimulus (easiness) (De Boeck et al., 2011; Doran et al., 2007). When both

θp and bs are high, the probability of a correct response is high. When high values of θp are

combined with low values of bs, the probability of a correct response for each respondent is

as much penalized as their ability cannot balance out the easiness of the stimulus.

BLUP are used for the estimation of the Rasch model parameters from the GLMMs. The

easiness estimates bs of the stimuli are obtained by adding the BLUP of each stimulus to the

estimates of the fixed effects. In the IAT case, the higher the value of the stimuli easiness bs,

the easier the stimulus, meaning that it is easily recognized and sorted to the category to which

it belongs. Similarly, adding the conditional mode of each respondent to the estimates of the

fixed effects results in the estimation of respondent ability parameters θp. In the IAT case, the

higher the value of θp, the higher the ability of the respondent of correctly categorizing the

stimuli.

Log-normal model estimates. The estimates of the log-normal model parameters can be

obtained by combining the fixed factors to the random factors of the LMMs applied to the

log-time responses. In the typical formulation of the log-normal model (Equation 4.12), the

mean of the distribution of the expected log-time responses is expressed by the difference

between the time intensity parameters of the stimuli δs and the speed parameters of the re-

spondents τp (i.e., δs − τp). In the LMMs, the mean of the distribution is defined by the

additive effect between the respondent and stimulus characteristics, which move in the same

direction. Consistently, the lower the value of the speed parameter τp, the higher the speed,

and the lower the value of δp, the lower the time the stimulus requires for getting a response.

When respondents with a low value of τp (i.e., high speed) respond to items with a low

value of δs (i.e., low time intensity), the response times are fast. When a respondent with

a low value of τp encounters a stimulus with a high value of δs, the speed of the response
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depends on the distance between the respondent’s speed and the item time intensity.

4.4 Random structures

The random structures of the GLMMs and those of the LMMs are the same. The features

differentiating the models are the assumptions on the error term ε and the dependent variables.

In the GLMMs, the error term is supposed to follow a logistic distribution (i.e., ε ∼ L(0, σ2),

where L is used to denote the logistic distribution of the disturbance as in Doran et al. (2007))

and the dependent variable is the accuracy response to each trial of the IAT. In the LMMs, the

error term is supposed to follow a normal distribution (i.e., ε ∼ N (0, σ2)), and the dependent

variable y is the log transformation of the time response to each trial of the IAT, regardless

of whether the answer is correct or not. The expected response y for each observation i (i ∈

{1, . . . , n}) for participant p (p ∈ {1, . . . , P}) on stimulus s (s ∈ {1, . . . , S}) in condition c

(c ∈ {1, . . . , C}) can be either the expected log-odds of the probability of a correct response

(GLMMs) or the expected log-time of the response (LMMs).

In both GLMMs and LMMs, the fixed intercept α is set at 0 and the IAT associative

conditions c are specified as the fixed slope βcXc. Since the intercept is set at 0, none of the

levels of the fixed slope is taken as the reference value. Consequently, the marginal log-odds

of a correct response for each condition (GLMMs) and the marginal average log-time for

each condition (LMMs) are estimated. The fixed part of the models is kept constant, only the

random structures change across models.

The GLMMs applied to accuracy responses are identified by a capital “A”. The LMMs

applied to log-time responses are identified by a capital “T”.

The R code that can be used for estimating the Rasch model and the log-normal estimates

from IAT (SC-IAT) data is illustrated in Appendix A.
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4.4.1 Generalized Linear Mixed-Effects Models

The Rasch model estimates are obtained from the Best Linear Unbiased Predictors (BLUP),

which define the conditional modes of the factors specified as random effects. As such, the

person parameters θ are derived from the distribution of the person population, defined as

either αp ∼ N (0, σ2
αp
) (random intercepts) or βpc ∼ MVN (0,Σpc) (random slopes in the

associative conditions). In a similar vein, the stimulus parameters b are derived from the

distribution of the stimulus population, defined as either αs ∼ N (0, σ2
αs
) (random intercepts)

or βsc ∼ MVN (0,Σsc) (random slopes in the associative conditions).

Model A1 presents the simplest random structure, where only the between–respondents

across–conditions variability and the between–stimuli across–conditions variability are con-

sidered by specifying the random intercepts of both the respondents and the stimuli across

the associative conditions:

yi = logit−1(α + βcXc + αp[i] + αs[i] + εi), (4.16)

with

αp ∼ N (0, σ2
αp
) andαs ∼ N (0, σ2

αs
). (4.17)

The random structure of Model A1 results in the estimation of overall respondent ability

parameters θp and overall stimulus easiness parameters bs. This model should be preferred

when a low within–respondents between–conditions variability, as well as a low within–

stimuli between–conditions variability, are observed. The lack of variability at the levels of

both the respondents and the stimuli might indicate a lack of the IAT effect at both levels.

The ability estimates of the respondents inform about the overall ability of the respon-

dents in performing the categorization task, and they can be used as a measure of individual

differences for further analysis. The easiness estimates of the stimuli provide information on

the overall functioning of the stimuli in respect to their own category. The stimuli belonging

to the same category are supposed to be prototypical exemplars of their own category, and,
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as such, to be easily recognized and correctly assigned to their category. Consequently, they

should have similar easiness estimates. If a stimulus is not recognized as a prototypical ex-

emplar of its alleged category, it will have a higher chance of getting incorrect responses (i.e.,

being assigned to the incorrect category), from which a lower easiness estimate follows. By

comparing the easiness estimates of the stimuli belonging to the same category, it is possible

to investigate whether the stimuli belonging to the same category are all easily recognizable

as prototypical exemplars or not.

Model A2 accounts for the within–stimuli between–conditions variability and the between–

respondents across–conditions variability. The random slopes of the stimuli in the associative

conditions and the random intercepts of the respondents across the associative conditions are

specified:

yi = logit−1(α + βcXc + αp[i] + βs[i]ci + εi), (4.18)

with:

βsc ∼ MVN (0,Σsc) (4.19)

αp ∼ N (0, σ2
αp
), (4.20)

where Σsc represents the variance-covariance matrix of the population of the stimuli. It

expresses the by-stimulus variability in the associative conditions. The higher the covariance

of the stimuli in the two conditions, the more similar their functioning in the two conditions.

Model A2 results in condition–specific stimulus easiness estimates bsc and overall respondent

ability estimates θp. This model would be the best fitting one when a high within–stimuli

between–conditions variability is observed and respondents show a low between–conditions

variability.

The low variability at the respondent level might already indicate a lack of the IAT ef-

fect on their accuracy performance (i.e., ability remains constant across conditions). In other

words, the IAT associative condition does not have an effect on the ability of the respondent
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to sort the stimuli. The ability estimates can be used as a measure of individual differences in

performing the categorization task. Conversely, the high within–stimuli between–conditions

variability indicate that the functioning of the stimuli is affected by the specific associative

condition and that the stimulus characteristics make them easier to sort in one condition than

in the opposite one. The differential measure computed on the condition–specific stimulus es-

timates can inform about the contribution of each stimulus to the IAT effect. This information

leads to a better understanding of the automatic associations driving the effect.

The random structure of Model A3 has the same level of complexity as that of Model

A2. However, the multidimensionality on the error term is specified at the respondent level.

Model A3 accounts for the within–respondents between–conditions variability and the between–

stimuli across–conditions variability by specifying the random slopes of the respondents in

the associative conditions and the random intercepts of the stimuli across the associative con-

ditions:

yi = logit−1(α + βcXc + αs[i] + βp[i]ci + ϵi), (4.21)

with:

βpc ∼ MVN (0,Σpc) (4.22)

αs ∼ N (0, σ2
αs
), (4.23)

where Σpc represents the variance-covariance matrix of the population of the respondents.

It expresses the by-respondent variability according to the associative conditions. The high

covariance does not necessarily implies that the performance is not affected by the associa-

tive condition. For instance, a respondent with a high ability might have a high ability in

both conditions, although his performance might be affected by the associative conditions.

Model A3 results in condition–specific respondent ability estimates θpc and overall stimulus

easiness estimates bs. This model would be the best fitting model when a low within–stimuli

between–conditions variability and a high within–respondents between–conditions variabil-



4.4. RANDOM STRUCTURES 103

ity are observed.

As in Model A1, the lack of within–stimuli between–conditions variability might indicate

that the functioning of the stimuli is not affected by the associative condition in which they

are presented. The overall easiness estimates can still inform about the functioning of the

stimuli in respect to their own category.

The high within–respondents between–conditions variability at the respondent level indi-

cates that the IAT associative conditions affect the accuracy performance of the respondents,

or, in other words, that their ability level is in some way hindered by one of the associative

conditions. A measure of the bias due to the associative conditions on the accuracy perfor-

mance can be obtained by computing the difference between the condition–specific ability

estimates of the respondents.

4.4.2 Linear Mixed-Effects Models

The log-normal model estimates are obtained from the Best Linear Unbiased Predictors

(BLUP), which define the conditional modes of the factors specified as random effects. As

such, the person parameters τ are derived from the distribution of the person population, de-

fined as either αp ∼ N (0, σ2
αp
) (random intercepts) or βpc ∼ MVN (0,Σpc) (random slopes

in the associative conditions). In a similar vein, the stimulus parameters δ are derived from the

distribution of the stimulus population, defined as either αs ∼ N (0, σ2
αs
) (random intercepts)

or βsc ∼ MVN (0,Σsc) (random slopes in the associative conditions).

Model T1 presents the simplest random structure. Only the between–respondents across-

conditions variability and the between–stimuli across–conditions variability are considered

by specifying the random intercepts of both the respondents and the stimuli across the asso-

ciative conditions:

yi = α + βcXc + αp[i] + αs[i] + εi, (4.24)
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with

αp ∼ N (0, σ2
αp
) andαs ∼ N (0, σ2

αs
) (4.25)

Model T1 allows for estimating overall respondent speed parameters τp and overall stimulus

time intensity parameters δs. The speed estimates of the respondents inform about the overall

speed with which they have performed the categorization task. As the ability estimates ob-

tained from Model A1, the overall speed estimates can be used as a measure of individual dif-

ferences in further analysis. This model should be preferred when a low within–respondents

between–conditions variability and a low within–stimuli between–conditions variability are

observed. The lack of variability at both the respondent and stimulus levels might indicate

that there is not any IAT effect at both levels. The overall stimulus time intensity estimates

inform about the functioning of the stimuli in respect to their own category. If the stimuli be-

longing to the same category are equally recognized as prototypical exemplars of their own

category, they should require a similar amount of time for getting a response, and hence they

should show a similar time intensity estimate. If a stimulus presents characteristics that make

it less recognizable as a prototypical exemplar of a specific category (e.g., a picture of a can of

soda that is not immediately recognizable as either Coke or Pepsi), it might require more time

for being identified and sorted. Consequently, it should show a higher time intensity estimate.

By comparing the time intensity estimates of the stimuli belonging to the same category, it is

possible to investigate whether the stimuli belonging to the same category require a similar

time for getting a response. In doing so, other stimuli characteristics should be taken into

account. For instance, images stimuli require less time to be processed than attribute stimuli

(e.g., Houwer & Hermans, 1994). Moreover, the familiarity with a specific term might play

an import role in its recognition and sorting, hence positively (if it is a familiar term) or neg-

atively (if it is an unfamiliar term) affecting its time intensity. Also the length of the word

itself might influence the time intensity estimates of the stimuli.

Model T2 accounts for the within–stimuli between–conditions variability and the between–

respondents across–conditions variability. The random slopes of the stimuli in the associative
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conditions and the random intercepts of the respondents across the associative conditions are

specified:

yi = α + βcXc + αp[i] + βs[i]ci + εi, (4.26)

with:

βsc ∼ MVN (0,Σsc) (4.27)

αp ∼ N (0, σ2
αp
), (4.28)

where Σsc represents the variance-covariance matrix of the population of the stimuli, and it

expresses the by-stimulus variation according to the associative condition. As for accuracy

models, the higher the covariance, the more similar the functioning of the stimuli in the two

conditions. Model T2 results in condition–specific stimulus time intensity estimates δsc and

overall respondent speed estimates τp. This model should result as the best fitting model when

a high within–stimuli between–conditions variability is observed and respondents show a low

between–conditions variability.

The low variability at the respondents’ level might already indicate a lack of the IAT effect

on their speed performance (i.e., speed remains the same across conditions). In other words,

the speed of the respondents does not change according to the specific associative condition.

As for the overall speed estimates obtained with Model T1, these estimates can be used as a

measure of individual differences in performing the categorization task.

Conversely, the high within–stimuli between–conditions variability indicate that the stim-

uli do require a different amount of time to be sorted according to the associative condition

in which they are presented. Their functioning is hence affected by the associative condi-

tions, and the condition–specific time intensity estimates allow for investigating how and

how much. The differential measure computed between the condition–specific time intensity

estimates provide a measure of the bias on the time each stimulus require for getting a re-

sponse due to the associative conditions. Consequently, the contribution of each stimulus to



106CHAPTER 4. RASCH, LOG-NORMAL, AND LINEAR MIXED-EFFECTS MODELS

the IAT effect can be investigated.

The random structure of Model T3 has the same level of complexity as that of Model T2.

However, the multidimensionality on the error term is specified for the respondents and not

for the stimuli. Model T3 accounts for the within–respondents between–conditions variability

and the between–stimuli across–conditions variability by specifying the random slopes of the

respondents in the associative conditions and the random intercepts of the stimuli across the

associative conditions:

yi = α + βcXc + αs[i] + βp[i]ci + εi, (4.29)

with:

βpc ∼ MVN (0,Σpc), (4.30)

αs ∼ N (0, σ2
s), (4.31)

where Σpc is the variance-covariance matrix of the population of the respondents, and it

expresses the by-respondents variability according to the associative condition. A high co-

variance does not imply that respondents’ performance is not affected by the associative con-

ditions but that their baseline speed results in a similar performance in both conditions. This

model results in condition–specific respondent speed estimates τpc and overall stimulus time

intensity estimates δs. Model T3 should result as the best fitting model when a low within–

stimuli between–conditions variability and a high within–respondents between–conditions

variability are observed. As in Model T1, the lack of within–stimuli between–conditions

variability might indicate that the functioning of the stimuli is not affected by the associative

condition in which they are presented. The overall time intensity estimates can inform about

the functioning of the stimuli in respect to their own category.

The high within–respondents between–conditions variability at the level of the respon-

dents indicates that the IAT associative conditions affect their speed performance (i.e., the
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speed is lower in one of the associative conditions). A measure of the bias due to the associa-

tive conditions can be obtained by computing the difference between the condition–specific

speed estimates of each respondent.

4.5 Other random structures

The random structures presented in the previous sections are just some of the possible random

structures that can be specified for analyzing IAT data.

Since IAT data has a specific design with know sources of variability (illustrated in Sec-

tion 1.4), a model with a random structure that decomposes the error variance into each

of the sources of variation can be specified (Maximal Model, MM; Barr et al., 2013). In the

MM, both the between–respondents across–conditions variability and the within–respondents

between–conditions variability can be accounted for by specifying the random intercepts of

the respondents across the associative conditions as well as their random slopes in the associa-

tive conditions. The same can be done for the stimuli, by specifying their random intercepts

across the associative conditions and their random slopes in the associative conditions. More-

over, the variability due to the interaction between the stimuli and the respondents variability

(i.e., the reactions of each respondent to each stimulus) can be accounted for by specifying

the interaction effect between the random intercepts of the respondents and the stimuli.

The MM results in the estimation of the weights of each fixed effect, as well as in the esti-

mation of the variance of the population to which each factor considered as random belongs.

In this case, the stimuli, the respondents, and their interaction. Also the variance-covariance

matrices for each level on which the multidimensionality of the error variance is allowed

are estimated. Therefore, the variance of the respondents in each level of the associative

conditions, as well as their covariance, are estimated. The same is done for the stimuli.

By considering the two levels of the fixed effect of the associative conditions and by set-

ting the fixed intercept at 0, this model results in the estimation of 18 parameters, two of

which are the weights associated to the fixed effects. Three parameters refer to the estimated

variances of the populations of the respondents, the stimuli, and their interaction. Three
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parameters are estimated for the multidimensionality of the associative conditions on the re-

spondents (the variances in the two conditions and their covariance), as well as three param-

eters for the multidimensionality of the associative conditions on the stimuli (the variances

in the two conditions and their covariance). Finally, one parameter refers to the estimated

residual variance.

A model of such a complexity needs an extremely high variability at each level of the

random structure to converge. Beyond being at risk of convergence failure, it is also at

risk of over-fitting the data (Bates, Kliegl, et al., 2015), hence resulting in biased and not-

interpretable estimates.

A model with the random structure of the MM is neither needed nor appropriate for the

estimation of the Rasch model and the log-normal model parameters from the IAT data. By

specifying both the respondents and the stimuli as random intercepts across the associative

conditions and random slopes in the associative conditions, overall and condition–specific

estimates can be obtained for both of them. The difference between each of the condition–

specific estimates and the overall estimates provides information about the bias in each con-

dition for either the respondents or the stimuli. The difference between the condition–specific

estimates results in a measure of the bias due to the IAT associative conditions. Consequently,

it allows for investigating the impact of the IAT associative conditions on either the perfor-

mance of the respondents or the functioning of the stimuli. When the IAT is used, the focus

is usually on this difference,taken as the expression of the IAT effect. Therefore, the estima-

tion of the overall estimates for both the respondents and the stimuli can be dropped without

losing important information.

For the Rasch model or the log-normal model to be identified, either the respondents or

the stimuli have to be centered around 0 (e.g., Gelman & Hill, 2007). This can be done by

setting the fixed intercept at 0 and by specifying either the respondents or stimuli as the ran-

dom variation around it (i.e., random intercepts). As such, the BLUP for each respondent or

for each stimulus defines the deviation of each level of the considered factor from 0. Conse-

quently, only the random slopes in the associative conditions of the respondents or those of

the stimuli can be specified, while the other factor must be specified as random intercepts.
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The decision on where to allow for the multidimensionality of the associative conditions,

whether on the respondents or on the stimuli, should be driven by the observed variability in

the data.

Finally, the estimation of the interaction effect between the random intercepts of the stim-

uli and the respondents requires for an high respondents × stimuli variability to avoid conver-

gence failure. Consequently, it can be dropped and added to the model only when the error

variance is still high after the estimation of all other parameters (Judd et al., 2012; Westfall

et al., 2014).

Other fixed effects could have been included in the models as well. For instance, the

stimulus categories could have been included as a fixed effect. However, we decided to focus

on the effect of the IAT associative condition, and on each stimulus/respondent deviation from

it. In our opinion, the information yielded from a model with this structure is more useful

for gaining insights on the functioning of the IAT, for example by highlighting the stimuli

that give the highest contribution to the IAT effect. By specifying the fixed effect of the

stimulus categories, an information on the respondent or stimulus deviations from the mean

of each stimulus category could have been obtained. However, this information is useful and

meaningful for the investigation of the functioning of the stimuli, while it does not provide

important information at the respondent level. What does it mean that respondent p has an

impairment of 1.06 on stimulus pain of the category Bad? This information might be more

useful if also the interaction between the stimulus categories and the associative conditions is

specified. However, this interaction would need an extremely high variability for the model

to converge and for it to provide meaningful estimates.

We decided to keep a more parsimonious model by including a fixed effect (i.e., the

associative condition) able to provide useful information regarding both the respondents and

the stimuli. Nothing is preventing anyone from including other fixed effects, and to check

whether the model does converge or not. Since the aim of the thesis was to provide a general

modeling framework for implicit measure data, we decided to go for a more parsimonious

but generalizable model.

Finally, considering only the fixed effect of the condition, hence allowing for the multidi-
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mensionality only according to this effect, is in line with previous applications of the Rasch

model to IAT data (e.g., Anselmi et al., 2013).



Chapter 5

Applications of (G)LMMs to IAT data

In this Chapter, two empirical applications of the modeling framework proposed in Chap-

ter 4 are presented. In the first application, the accuracy and and log-time models for the

estimation of the Rasch and log-normal model parameters have been applied to an IAT for

the implicit assessment of attitudes towards Black and White people (i.e., Race IAT, Section

5.1). The relationship between the model estimates and the typical IAT scoring (i.e., the

D score) has been investigated as well. The second application was aimed at investigating

whether the estimates obtained with the accuracy and log-time models result in a better mea-

sure of the construct under investigation than the D score. To pursue this aim, the predictive

abilities of the model estimates and the D score have been compared, and an IAT for the

implicit assessment of the preference for dark and milk chocolate was used (i.e., Chocolate

IAT, Section 5.2).

A summary of the Rasch and log-normal model estimates that can be obtained from the

random structures of the (G)LMMs presented in Chapter 4 is reported in Table 5.1.

The accuracy and log-time models were fitted with the lme4 package (Bates, Mächler,

et al., 2015) in R (Version 3.5.1, R Core Team, 2018). The IAT D scores were computed with

the implicitMeasures package (Epifania, Anselmi, & Robusto, 2020d). The R code for

estimating the models is reported in Appendix A
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Table 5.1
Overview of the Rasch and log-normal model estimates.

Rasch model Log-normal model
Model Respondents Stimuli Respondents Stimuli

1 Overall (θp) Overall (bs) Overall (τp) Overall (δs)
2 Overall (θp) Condition–

specific (bsc)
Overall (τp) Condition–

specific (δsc)
3 Condition–

specific (θpc)
Overall (bs) Condition–

specific (τpc)
Overall (δs)

Note: p ∈ {1, . . . , P}, s ∈ {1, . . . , S}, c ∈ {1, . . . , C} denote any respondent, stimulus,
condition, where P , S, and C, are the number of respondents, stimuli, and conditions, re-
spectively.

5.1 Empirical application on a Race IAT

5.1.1 Method

Participants. Sixty-five university students (F = 49.23%, Age = 24.95 ± 2.09 years) vol-

untarily took part in the study. Participants were informed about the confidentiality of the

data and asked for their consent to take part in the study. Most of them (84.62%) identified

themselves as belonging to the Mediterranean ethnic group.

Materials and procedure. Participants were presented with a Race IAT. It was composed

of 16 attribute stimuli, divided in 8 positive attributes (love, good, happiness, joy, glory,

peace, pleasure, laughter) and 8 negative attributes (bad, pain, failure, annoying, evil, hate,

horrible, terrible), and 12 object stimuli. Object stimuli (same as those in Study 2 in Nosek

et al., 2005) were 6 Black people faces and 6 White People faces. Participants were pre-

sented with 60 trials in the White-Good/Black-Bad (WGBB) condition, and 60 trials in the

Black-Good/White-Bad (BGWB) one. Participants were given feedback in case of incorrect

responses and were asked to correct the response to continue the experiment. They were

instructed to be as accurate and fast as they could.
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5.1.2 Data analysis

Data cleaning and D score

Exclusion criteria based on both latency and accuracy responses are applied (Greenwald et

al., 2003; Nosek et al., 2002). Specifically, respondents are eliminated if they show more than

the 25% of incorrect responses in at least one associative condition (Nosek et al., 2002), or if

they have more than the 10% of the trials with a latency faster than 300 ms (Greenwald et al.,

2003). Trials with a latency slower than 10,000 ms are eliminated as well. The D1 algorithm

in Greenwald et al. (2003) is used for scoring the IAT. The difference is taken between the

average response time in the BGWB and the WGBB conditions (i.e., positive scores stand

for a possible preference for White people over Black people). LMMs are applied to the raw

log-time responses of both correct and incorrect responses, without any penalties.

Outfit Statistics

The fit of the data to the model is evaluated with outlier-sensitive fit statistics (i.e., Outfit

statistics). These statistics are particularly sensitive to unexpected responses observed when

the locations of persons and items are far away from each other, and they are commonly

employed for the evaluation of the fit of each item and each respondent to the Rasch model.

Outfit statistics are usually computed for accuracy responses, and on data where there is only

one response from a subject to a certain item. In this section, an attempt of computing Outfit

statistics for the log-normal model and for the fully-crossed structure of the IAT is presented.

Rasch model. Outfit statistics on the accuracy responses are computed by following a pro-

cedure close to that usually employed for their computation (e.g., Linacre, 2002). Typical

Outfit computation procedures are based on the standardized residuals for only one respon-

dent × stimulus occurrence. As already mentioned, in the IAT there are more occurrences

for the combination of each respondent with each stimulus in each associative condition.

Consequently, the computation is adapted to the specific data structure of the IAT.

Let l ∈ {1, . . . , L} be the number of trials of stimulus s, and assume that each stimulus
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has an equal number of trials. If this is not true, the variable l takes on the form of ls. The

standardized residuals are computed as:

zpscl =
xl − P (xl)√︁

P (xl = 1)P (xl = 0)
, (5.1)

where P (xl) is the expected probability for a correct response to each trial l of each stimulus s

(s ∈ {1, . . . S}) in each condition c (c ∈ {1, . . . C}) from each respondent p (p ∈ {1, . . . P})

estimated with the Rasch model, and xl is the observed response to each trial l of each stim-

ulus s in each condition c from each respondent p.

Normally, the Outfit statistics are computed by averaging the squared standardized residu-

als across respondents (stimuli Outfit) or across items (respondents Outfit), and one value for

each stimulus and one for each respondent are obtained. In the IAT case, also the associative

condition must be taken into account, and the number of Outfit statistics for each respondent

and each stimulus depends on the random structure of the model.

If Model A1 results as the best fitting model, overall Outfit statistics for the respondents

up:

up =

S∑︂
s=1

L∑︂
l=1

C∑︂
c=1

z2pscl

S × L× C
, (5.2)

and overall Outfit statistics for the stimuli us:

us =

P∑︂
p=1

L∑︂
l=1

C∑︂
c=1

z2pscl

P × L× C
, (5.3)

are obtained, where P , S, L, C denote any respondent, stimulus, trial and condition, respec-

tively.

If Model A2 results as the best fitting model, then condition–specific Outfit statistics usc
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for the stimuli:

usc =

P∑︂
p=1

L∑︂
l=1

z2pscl

P × L
, (5.4)

and overall Outfit statistics for the respondents up (Equation 5.2) are computed, where P , and

L, denote any respondent and trial, respectively.

Conversely, if Model A3 results as the best fitting model, condition–specific Outfit statis-

tics for the respondents upc:

upc =

S∑︂
s=1

L∑︂
l=1

z2pscl

S × L
, (5.5)

and overall Outfit statistics for the stimuli us (Equation 5.3) are computed, where S and L

denote any stimulus and trial, respectively.

Log-normal model. A similar procedure is followed for the computation of the Outfit

statistics on the log-time responses. The difference for the computation of the residuals zpscl

is taken between the observed log-time responses to each trial tl and the expected log-time to

each trial t̄l estimated with the log-normal model.

If Model T1 results as the best fitting model, then overall Outfit statistics up for the re-

spondents and overall Outfit statistics for the stimuli are computed by following Equations

5.2 and 5.3, respectively.

If Model T2 results as the best fitting one, then condition–specific Outfit statistics usc

for the stimuli and overall Outfit statistics up for the respondents are computed by following

Equations 5.4 and 5.2, respectively.

Conversely, if Model T3 results as the best fitting model, respondent condition–specific

Outfit statistics upc and overall stimulus outfit statistics us are obtained as in Equations 5.5

and 5.3, respectively.

For the Outfit statistics computed on the accuracy responses and on the log-time re-

sponses, the thresholds indicating underfit (i.e., data show a variability that the model cannot

explain) or overfit (i.e., data show less variability than that expected by the model) in Linacre
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(2002) are used to decide on the goodness-of-fit of the specific respondent/stimulus to the

data. If Outfit statistics range between 0.50 and 2.00 (Linacre, 2002), the data are considered

to have a good fit to the model. A major weight is given to respondents/stimuli showing

underfit, while overfit is not considered as much problematic.

Relationship between model estimates and typical scoring

In case the best fitting model allows for the multidimensionality of the associative conditions

at the respondent level, differential measures (either ability-differential or speed-differential)

are computed. The relationship between the estimates of the Rasch and log-normal models,

their eventual differential measures, and the typical IAT D score are investigated both by com-

puting Pearson’s correlations between the variables and by regressing the linear combination

of the respondent estimates on the D score. The eventual differential measures and the linear

combination of their single components are regressed on the D score in separate models to

further investigate the actual weight of each condition–specific estimate on the final D score.

Backward deletion is used for investigating the predictor(s) that explains the highest amount

of variance of the D score.

5.1.3 Results

No participants or trials were eliminated because of the response time exclusion criteria,

while three participants were excluded because of the accuracy deletion criterion (Nosek

et al., 2002). The sample was finally composed of 62 participants (F = 48.39%, Age =

24.92± 2.11 years).

The overall average response time was 815.06 ms (sd = 423.20, skewness = 3.82, kurtosis

= 33.87), while the average response time was 667.11 ms in the WGBB condition (sd =

294.06, skewness = 4.64, kurtosis = 44.60) and 943.01 ms in the BGWB one (sd = 488.89,

skewness = 3.45, kurtosis = 29.05). After the log-transformation of the response latencies

(expressed in second), the overall average response time was −0.29 log-seconds (sd = 0.40,

skewness = 0.72, kurtosis = 3.88), the average response time was −0.43 log-seconds in the
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WGBB condition (sd = 0.31, skewness = 1.26, kurtosis = 3.73), and the average response

time was −0.15 log-seconds in the BGWB condition (sd = 0.42, skewness = 0.24, kurtosis

= 5.09).

Accuracy models

The accuracy models in Table 5.1 were applied to the Race IAT. Concerning AIC, Log-

Likelihood, and Deviance, Model A2 (AIC = 3784.43, Log-Likelihood = −1886.21, De-

viance = 3722.43) performed better than Model A3 (AIC = 3786.51, Log-Likelihood =

−1887.26, Deviance = 3774.51) and Model A1 (AIC = 3785.87, Log-Likelihood = −1888.93,

Deviance = 3777.87). However, the latter one showed the lowest BIC value (3813.53, 3825.91,

3828.00, BIC values for Model A1, A2, and A3, respectively). Model A2 was chosen, provid-

ing overall participants ability estimates θp and condition–specific stimulus easiness estimates

bWGBB and bBGWB of the Rasch model. The estimates of the fixed slope of Model A2 indicated

a higher probability of correct response in the WGBB condition (log-odds = 3.45, SE = 0.12)

than in the BGWB condition (log-odds = 2.07, SE = 0.11). The between–participants vari-

ability was 0.17. The between–stimuli variability in the WGBB condition (σ2 = 0.08) was

lower than the between–stimuli variability in the BGWB condition (σ2 = 0.15). The correla-

tion between the stimuli variabilities in the two conditions was moderate (r = .34).

Outfit statistics of the respondents ranged between 0.04 and 1.85 (M = 0.92 ± 0.33).

Seven respondents showed Outfit statistics below 0.50, but they were retained in the analysis.

All stimuli showed appropriate Outfit values in condition BGWB (M = 0.92 ± 0.12, Min

= 0.69, Max = 1.08). Outfit statistics in the WGBB condition (M = 0.94 ± 0.40, Min

= 0.25, Max = 1.71) highlighted four stimuli with Outfit values below 0.50, but they were

retained in the analysis. Stimuli easiness estimates for each condition resulting from Model

A2 are reported in Table 5.2.



Table 5.2
Stimulus condition–specific easiness (bsc) and overall time intensity estimates (δs) - Race IAT

bWGBB bBGWB bWGBB − bWGBB δs bWGBB bBGWB bWGBB − bWGBB δs

Good attributes Bad attributes

joy 3.53 1.69 1.85 0.02 evil 3.19 1.37 1.82 −0.01

happiness 3.48 1.67 1.81 0.01 horrible 3.56 1.77 1.79 0.05

pleasure 3.29 1.60 1.69 0.05 bad 3.11 1.58 1.53 0.03

peace 3.32 1.73 1.59 0.01 terrible 3.34 1.81 1.52 0.01

good 3.54 1.95 1.59 0.01 hate 3.34 1.85 1.50 0.01

laughter 3.54 2.03 1.52 0.09 failure 3.43 2.06 1.38 0.05

love 3.48 1.99 1.49 0.01 annoying 3.07 1.87 1.20 0.09

glory 3.42 1.99 1.43 0.08 pain 3.21 2.02 1.19 0.10

M (SD) 3.45 (0.09) 1.83 (0.16) 1.62 (0.15) 0.03 (0.04) 3.28 (0.15) 1.79 (0.21) 1.49 (0.22) 0.04 (0.04)

White people faces Black people faces

wm3 3.61 2.04 1.57 −0.05 bm2 3.61 2.32 1.30 −0.08

wf3 3.66 2.29 1.36 −0.05 bf2 3.56 2.33 1.23 −0.06

wf2 3.59 2.46 1.12 −0.03 bf1 3.56 2.36 1.20 −0.04

wm2 3.48 2.44 1.04 0.03 bm1 3.52 2.42 1.10 −0.10

wf1 3.59 2.57 1.02 −0.05 bm3 3.58 2.51 1.07 −0.09

wm1 3.28 2.28 1.01 −0.02 bf3 3.36 2.47 0.89 −0.05

M (SD) 3.54 (0.14) 2.35 (0.17) 1.19 (0.21) −0.03 (0.03) 3.53 (0.09) 2.40 (0.07) 1.13 (0.13) −0.07 (0.02)

Note: “wf”: White person female face; “wm”: White person male face; “bf”: Black person female face; “bm”: Black person male face; WGBB: White-
Good/Black-Bad condition; BGWB: Black-Good/White-Bad condition. Rows are ordered by decreasing values of bWGBB − bWGBB. The units of the easiness
estimates are the log-odds, the units of the time intensity estimates are the log-seconds. According to the condition–specific easiness estimates, the two
stimuli giving the highest contribution to the IAT effect are in bold, while the three giving the least contribution are in italic.
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The stimuli tended to be easier in the WGBB condition (M = 3.44 ± 0.16) than in the

BGWB condition (M = 2.05 ± 0.33, t(39) = 19.89, p < .001, 95% CI [1.24, 1.53]). The

belonging category of the stimuli was used to predict the difference between the condition–

specific easiness estimates1, highlighting a significant effect of the stimulus categories (F (4, 24) =

359.87, p < .001, Adjusted R2 = 0.98). Both evaluative dimensions gave the highest contri-

bution to the IAT effect (BBad = 1.49, SE = 0.07, t(24) = 21.60, p < .001, and BGood = 1.62,

SE = 0.07, t(24) = 23.47,, p < .001), while the target objects categories gave a similar (and

lower) contribution to the IAT effect (BBlack = 1.13, SE = 0.08, t(24) = 14.18, p < .001,

BWhite = 1.18, SE = 0.08, t(24) = 14.88, p < .001). The stimuli that gave the highest contri-

bution to the IAT effect were joy and happiness (category Good), evil and horrible (category

Bad), wm3 and wf3 (category White), and bm2 and bf2 (category Black).

Log-time models

The log-time models in Table 5.1 were applied to the Race IAT. Model T2 produced aberrant

estimates (i.e., correlation between the stimuli random slopes equal to 1). Model T3 (AIC =

4399.66, BIC = 4448.06, Log-Likelihood = −2192.83, Deviance = 4385.66) performed better

than Model T1 (AIC = 4762.63, BIC = 4797.20, Log-Likelihood = −2376.32, Deviance =

4752.63). Model T3 was chosen. This model provided condition–specific respondent speed

estimates τWGBB and τBGWB and overall stimuli time intensity estimates δj of the log-normal

model. Respondent Outfit statistics showed a good fit for all respondents in both associative

conditions (M = 0.98 ± 0.01, Min = 0.98, Max = 0.99 for the BGWB condition, and M

= 0.99 ± 0.01, Min = 0.98, Max = 1.03 for the WGBB condition). Overall Outfit statistics

indicated a good fit for all stimuli (M = 1.00± 0.16, Min = 0.77, Max = 1.33).

Responses in the WGBB condition were faster (B = −0.43, SE = 0.02) than responses

in the BGWB condition (B = −0.15, SE = 0.03). The between-stimuli variability was

particularly low (σ2 = 0.003), while the between–participants variability was slightly higher

in the BGWB condition (σ2 = 0.05) than in the WGBB one (σ2 = 0.02). The correlation

between the respondent variabilities in the two conditions was strong (r = .63).

1The intercept was removed so that none of the stimulus categories is taken as the reference for the others
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The time intensity estimates of the stimuli δs obtained from Model T3 are reported in

Table 5.2. A significant effect of the stimulus categories was found on their time intensity

estimates (F (4, 24) = 11.77, p < .001, Adjusted R2= 0.60). The exemplars of both evalua-

tive dimensions tended to require a large amount of time for getting a response (BBad = 0.04,

SE = 0.01, t(24) = 3.44, p < .001, and BGood = 0.03, SE = 0.01, t(24) = 2.63, p = .01).

The exemplars of the category Black were the stimuli requiring the least time for getting a

response (B = −0.07, SE = 0.01, t(24) = −4.88, p = 0.01), immediately followed by the

exemplars of the category White (B = −0.03, SE = 0.01, t(24) = −2.13, p = 0.04).

Three of the positive attribute stimuli (pleasure, glory, laughter) showed time intensity

estimates higher than the estimates of the stimuli belonging to the same category. Also three

negative attributes (failure, annoying, pain) showed a higher time intensity estimates than

the other negative attributes. On the other hand, object stimuli tended to have similar time

intensity estimates.

Relationship between model estimates and typical scoring

A speed-differential measure was computed as the difference between the condition–specific

speed estimates (i.e., τDGWB − τWGBB), such that negative values indicated a respondent with

a higher speed in the BGWB condition than in the WGBB condition. Pearson’s correlations

were computed between the ability and condition–specific speed estimates and the speed-

differential. The ability did not significantly correlate with either the speed in the BGWB

condition (r = .13, p = .32) or the speed-differential (r = −.14, p = .28), while it moder-

ately and positively correlated with the speed in the WGBB condition (r = .32, p = .01).

The ability and the speed-differential were regressed on the D score. Backward deletion

kept both the predictors in the model (F (2, 59) = 106.3, p < .001, Adjusted R2 = .78). The

speed-differential strongly and positively predicted the D score (B = 1.93, t(59) = 13.88,

p < .001), whereas ability negatively predicted the D score (B = −0.18, t(59) = −2.48,

p = .016).

The ability and condition–specific speed estimates were regressed on the D score as well.

Backward deletion kept all predictors in the model, which approximately explained the same
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amount of variance as the previous one (F(3, 58) = 76.46, p < .001, Adjusted R2 = .79).

The speed in the WGBB condition negatively predicted the D score (B = –2.22, t(58) =

–11.43, p < .001), while the speed in the BGWB condition positively predicted it (B = 1.92,

t(58) = 14.16, p < .001). Despite ability remained in the model, its contribution was no

longer significant (B = –0.13, t(58) = –1.76, p = .08).

5.1.4 Final remarks

The fine-grained analysis at the level of the stimuli allowed for the investigation of the rep-

resentativeness the stimuli of their own category, as well as of their contribution to the IAT

effect. Besides leading to a deeper understanding of the IAT effect and hence of the measure

itself, this information can be exploited for the design of brief but still highly informative

IATs by selecting the most prototypical stimuli, hence reducing the across-trial variability.

This might lead to the computation of more D scores.

The details at the stimulus level inform about the evaluative associations driving the

performance. In this instance, the evaluative dimensions Good and Bad showed the high-

est difference between the associative conditions, and they were both easier in the White-

Good/Black-Bad (WGBB) condition than in the Black-Good/White-Bad (BGWB) one. This

suggests that Good exemplars were more easily sorted when their category shared the re-

sponse key with the category White than when it shared the response key with the category

Black. Similarly, Bad attributes were more easily sorted when their category shared the re-

sponse key with the category Black than when it shared the response key with the category

White.

The overall ability estimates indicate a low within–respondents between–conditions vari-

ability in the accuracy performance of the respondents, implying that the accuracy perfor-

mance of the respondents did not change according to the associative conditions. Conversely,

the condition–specific speed estimates indicate that the speed of the respondents varied be-

tween conditions. Taken together, these results show that the respondents tended to slow

down in the condition against their own automatically activated association to keep their
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accuracy performance unaltered. Evidence for this effect has already been found in the liter-

ature (speed-accuracy trade-off, Klauer et al., 2007), and it is indeed a common and expected

phenomenon in speeded computerized tasks (van der Linden, 2006, 2009).

The speed and ability estimates of the respondents allowed for a deeper understanding of

the IAT effect as it is expressed by the D score. Ability was poorly related with the D score,

while the condition–specific speed estimates pinpointed the higher contribution of the speed

in the WGBB condition than of that of the speed in the BGWB one, consistently with what

suggested by the condition–specific estimates of the stimuli.

In this application, the relationship between model estimates and external criteria, such as

the explicit assessment of the same construct or behavioral outcomes, was not investigated.

Therefore, conclusions on the validity of the model estimates should be interpreted with

caution and further evidence is needed.

5.2 Empirical application on a Chocolate IAT

The estimates obtained with the modeling framework proposed in Chapter 4 are more resis-

tant to the non-independence of the IAT observations. As such, they are supposed to provide

a better measure of the construct under investigation than the D score, potentially resulting in

a better prediction of behavioral outcomes. This study was aimed at directly addressing this

speculation by comparing the abilities of the Rasch and log-normal model estimates and the

D score to predict a dichotomous behavioral choice. Moreover, previous studies suggested

that the IAT works better when a smaller but highly representative set of stimuli instead of

a larger one including also poorly representative stimuli is used (Nosek et al., 2005). The

latter case results in a high stimulus heterogeneity and in a high across-trial variability, which

deeply affect the D score computation (Wolsiefer et al., 2017) and produce an unreliable

measure of the construct under investigation. Conversely, the use of a small set of highly

prototypical and representative stimuli should reduce the across-trial variability, leading to

a more accurate measure of the construct under investigation as expressed by the D score.

Thus, the D score should result in a better predictive ability of behavioral outcomes when it
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is computed on a smaller data set composed of highly representative stimuli than when it is

computed on either the entire data set or a smaller data set composed of poorly representative

stimuli. To test this hypothesis, the information at the stimulus level provided by the Rasch

and log-normal models was exploited to obtain two smaller data sets, one including only the

most informative stimuli and one including only the least informative ones.

5.2.1 Method

Participants. Seventy-six university students (F = 71.05%, Age = 24.02 ± 2.88 years)

volunteered to take part in the study. They were informed about the confidentiality of the

data and they were asked for their consent to take part in the study.

Materials and procedure. The Chocolate IAT used the same stimuli described in Epifania,

Anselmi, and Robusto (2020b). Specifically, twenty-six attribute stimuli (13 Good exemplars

and 13 Bad exemplars) and fourteen chocolate images (7 Dark chocolate and 7 Milk choco-

late) were used.

Respondents were presented with 60 trials in the Dark-Good/Milk-Bad (DGMB) condi-

tion, and 60 trials in the Milk-Good/Dark-Bad (MGDB) condition. No feedback was given

in case of incorrect responses. Respondents were asked to be as fast and as accurate as they

could.

The explicit chocolate preferences of the respondents were investigated with two items

(i.e., “How much do you like milk chocolate?” and “How much do you like dark chocolate?”)

evaluated on a 6 points Likert-type scale (0 - Not at all, 5 - Very much). They were also asked

about their food habits and behaviors through a 6-item scale (Cronbach’s α = 0.80, example

item “I am usually on a diet”), rated on a 4-point agreement Likert-type scale (1 - Strongly

Disagree, 4 - Strongly agree). Higher scores indicated higher care for food habits. At the end

of the experiment, participants were invited to choose between a free dark or milk chocolate

bar as a reward for their participation. The experimenter registered their choice after they left

the laboratory. Participants performed the experiment individually in a laboratory setting.
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5.2.2 Data analysis

Data cleaning and D score computation

Exclusion criteria based on both accuracy (Nosek et al., 2002) and time responses (Greenwald

et al., 2003) are applied (see Section 5.1.2). The D4 algorithm in Greenwald et al. (2003) is

used to score the IAT. The difference is taken between the average response times in the

MGDB condition and in the DGMB condition (i.e., positive scores stand for a possible pref-

erence for dark chocolate over milk chocolate). LMMs are applied to the raw log-time re-

sponses of both correct and incorrect responses, without any penalties.

Oufit statistics

The procedure for computing Outfit statistics and the thresholds for interpreting them are as

those used in Section 5.1.2.

Relationship between model estimates, typical scoring, and explicit measures

The relationships between the respondent estimates of the Rasch and log-normal models, the

D score, and explicit chocolate evaluations are investigated by computing Pearson’s correla-

tions. If the best fitting models allow for the multidimensionality at the respondents level, so

that condition–specific estimates are obtained, differential measures are computed, and their

relationship with the above mentioned variables is investigated as well.

Predictive ability of a behavioral outcome

To investigate the predictive abilities of the Rasch and log-normal model estimates and the D

score, separate logistic regression models are specified. The dark chocolate choice (DCC) is

labeled as 0, and the milk chocolate choice (MCC) is labeled as 1.

If the best fitting model for the Rasch model or log-normal model allow for the mul-

tidimensionality at the respondent level (hence condition–specific respondent estimates are

obtained) then differential measures are computed and used for the prediction. In such cases,
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the predictive abilities of the differential measures and of the linear combination of their sin-

gle components are investigated. The predictive ability of the linear combination of single

components of the D score is investigated as well. The single components of the D score

are the average response times (computed on the already corrected response times) in each

associative condition.

Predictive ability of the reduced data sets. The information at the stimuli level can be

used to select the most and least informative stimuli for each stimulus categories. The three

most informative stimuli for each category, as well as the three least informative stimuli for

each category, are selected to create smaller data sets, a highly informative one (called “Best”)

and a lowly informative one (called “Worst”). In both cases, the stimuli pool is composed

of twelve stimuli. The D4 algorithm is computed on each of the newly obtained data set,

and they are used to predict the choice. The performances of the D scores computed on

the smaller data sets and that computed on the entire data set are compared. All starting

models include food habits, and relevant predictors are selected with backward deletion. The

model general (i.e., the percentage of choices correctly identified by the model), DCC (i.e.,

the percentage of DCCs correctly identified by the model), and MCC (i.e., the percentage

of MCCs correctly identified by the model) accuracies are used as criteria to establish the

predictors best accounting for the actual choice. Nagelkerke’s R2 (Nagelkerke, 1991) is used

as Pseudo R2.

5.2.3 Results

One trial was eliminated because of a latency higher than 10,000 ms. Two participants were

eliminated grounding on the accuracy elimination criterion (Nosek et al., 2002). The final

sample was composed of 74 participants (F = 71.62%, Age = 24.08± 2.88 years). The milk

chocolate bar was chosen by the 41.90% of the participants.

The overall average response time was 858.99 ms (sd = 503.08, skewness = 3.85, kurtosis

= 29.34). The average response time was 973.80 ms in the DGMB condition (sd = 557.08,

skewness = 3.07, kurtosis = 16.90) and 744.20 ms (sd = 411.75, skewness = 5.75, kurtosis
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= 71.07) in the MGDB one. After the log-transformation of the response latencies (expressed

in second), the overall average response time was −0.26 log-seconds (sd = 0.43, skewness

= 1.00, kurtosis = 1.48), the average response time was −0.14 log-seconds in the DGMB

condition (sd = 0.45, skewness = 0.72, kurtosis = 0.93), and the average response time was

−0.38 log-second in the MGDB condition (sd = 0.37, skewness = 1.38, kurtosis = 3.17).

Accuracy models

The accuracy models in Table 5.1 were applied to the Chocolate IAT. Model A3 failed to con-

verge, while Model A2 (AIC = 3625.58, Log-Likelihood = −1806.79, Deviance = 3613.58)

performed better than Model A1 (AIC = 3627.71, Log-Likelihood = −1809.85, Deviance

= 3619.71). Model A1 showed a lower value of BIC than Model A2 (3656.07, 3668.13 for

Model A1 and Model A2, respectively). Model A2 was chosen. The model resulted in the es-

timation of overall respondents ability θp and condition–specific stimulus easiness parameters

bMGDB and bDGMB of the Rasch model.

A higher probability of a correct response was found in the MGDB condition (log-odds

= 3.67, SE = 0.14) than in the DGMB one (log-odds = 2.61, SE = 0.10). The between–

respondents variability was high (σ2 = 0.33). The between-stimuli variability was higher in

the MGDB one (σ2 = 0.21) than in the DGMB condition (σ2 = 0.01). The variabilities of

the stimuli in the two conditions were weakly correlated (r = .20).

The respondent Outfit statistics ranged between 0.02 and 1.53 (M = 0.87 ± 0.31). Five

respondents showed Outfit values below 0.50, but they were retained in the analysis.

Four stimuli in the DGMB condition showed Outfit statistics below 0.50 (M = 0.89±0.30,

Min = 0.31, Max = 1.45) and ten stimuli in the MGDB condition showed Outfit statistics

below 0.50 (M = 0.85 ± 0.44, Min = 0.02, Max = 1.87). All stimuli were retained in the

analysis. The easiness estimates of the stimuli are reported in Table 5.3.



Table 5.3
Stimuli condition–specific easiness estimates (bsc) and overall time intensity estimates (δs) - Chocolate IAT

bDGMB bMGDB bDGMB − bDGMB δs bDGMB bMGDB bDGMB − bDGMB δs

Good attributes Bad attributes

joy 2.62 4.02 −1.40 0.01 hate 2.59 3.85 −1.26 0.01

happiness 2.64 4.03 −1.39 0.02 failure 2.68 3.93 −1.25 0.07

pleasure 2.56 3.70 −1.15 0.01 terrible 2.64 3.89 −1.24 0.04

peace 2.64 3.77 −1.14 −0.03 disaster 2.66 3.90 −1.24 0.07

heaven 2.63 3.77 −1.14 0.08 bad 2.58 3.73 −1.15 0.07

marvelous 2.66 3.79 −1.13 0.05 horrible 2.62 3.76 −1.14 0.05

laughter 2.67 3.76 −1.10 0.06 evil 2.63 3.74 −1.11 0.10

good 2.66 3.74 −1.08 0.01 disgust 2.60 3.70 −1.11 0.01

glory 2.57 3.57 −1.00 0.02 nasty 2.59 3.33 −0.74 0.04

love 2.62 3.58 −0.96 0.02 ugly 2.60 3.32 −0.72 −0.01

excellent 2.64 3.59 −0.95 0.01 pain 2.58 3.23 −0.65 0.05

beauty 2.61 3.46 −0.85 0.02 annoying 2.58 3.05 −0.47 0.08

wonderful 2.62 3.45 −0.83 0.09 agony 2.57 2.49 0.08 0.04

M (SD) 2.63 (0.03) 3.71 (0.17) −1.09 (0.17) 0.03 (0.03) 2.61 (0.03) 3.53 (0.41) −0.92 (0.40) 0.05 (0.03)

Dark Chocolate Milk Chocolate

Dark5 2.56 3.94 −1.38 −0.12 Milk3 2.60 3.95 −1.35 −0.04

Dark2 2.60 3.82 −1.23 −0.11 Milk6 2.66 3.99 −1.33 −0.04

Dark6 2.55 3.72 −1.16 −0.10 Milk4 2.53 3.80 −1.27 −0.04

Dark4 2.62 3.62 −1.00 −0.07 Milk2 2.57 3.61 −1.04 −0.06

Dark3 2.58 3.53 −0.95 −0.08 Milk5 2.62 3.64 −1.02 −0.05

Dark7 2.58 3.41 −0.83 −0.07 Milk1 2.62 3.62 −1.01 −0.03

Dark1 2.49 3.27 −0.78 −0.11 Milk7 2.54 3.49 −0.95 −0.04

M (SD) 2.57 (0.03) 3.62 (0.22) −1.05 (0.20) −0.10 (0.02) 2.59 (0.05) 3.73 (0.17) −1.14 (0.17) −0.04 (0.01)

Note: DGMB: Dark-Good/Milk-Bad condition; MGDB: Milk-Good/Dark-Bad condition; Difference: Difference between DGMB and MGDB condition.
Rows are ordered by absolute decreasing values of bDGMB − bDGMB. The units of the easiness estimates are the log-odds, the units of the time intensity
estimates are the log-seconds. According to the condition–specific easiness estimates, the three stimuli giving the highest contribution to the IAT effect are
in bold, while the three giving the least contribution are in italic.

127



128 CHAPTER 5. APPLICATIONS OF (G)LMMS TO IAT DATA

Irrespective of the category to which they belong, stimuli tended to be easier in the MGDB

condition (M = 3.63 ± 0.29) than in the DGMB one (M = 2.60 ± 0.04, t(40) = −21.97.

p < .001, 95% CI [−1.13,−0.94]). A significant effect of the stimulus categories was found

on the difference in the easiness estimates between the associative conditions (F (4, 36) =

139.80, p < .001, Adjusted R2= 0.93). The exemplars of the categories Milk (B = −1.13,

SE = 0.11, t(36) = −10.84, p < .001) and Good (B = −1.09, SE = 0.08, t(36) = −14.10,

p < .001) gave the highest contribution to the IAT effect. The stimulus categories Bad

(B = −0.92, SE = 0.07, t(36) = −11.98, p < .001) and Dark (B = −1.05, SE = 0.11,

t(36) = −9.97, p < .001) gave the least contribution to the IAT effect .

Log-time models

The log-time models presented in Table 5.1 were applied to the Chocolate IAT log-time re-

sponses. Model T2 produced aberrant estimates. Model T3 (AIC = 7159.23, BIC = 7208.87,

Log-Likelihood = −3572.62, Deviance = 7145.23) performed better than model T1 (AIC =

7856.45, BIC = 7891.91, Log-Likelihood = −3923.23, Deviance = 7846.45). Thus, model T3

was chosen. The model resulted in overall stimulus time intensity estimates δk and condition–

specific respondent speed estimates (τMGDB and τMGDB) of the log-normal model. Responses

tended to be faster in the MGDB condition (B = −0.36, SE = 0.02) than in the DGMB

condition (B = −0.12, SE = 0.03). The between–stimuli variability was extremely low

(σ2 = 0.004). The between–participants variability was higher in the DGMB condition

(σ2 = 0.05) than in the MGDB one (σ2 = 0.03). The correlation between the slopes of the

respondents in the two conditions was moderate (r = .40).

Respondents Outfit statistics showed a good fit for all respondents in both associative

conditions (M = 0.98 ± 0.01, Min = 0.97, Max = 1.00 for the DGMB condition, and M

= 0.99± 0.01, Min = 0.98, Max = 0.99 for the MGDB condition). Outfit statistics indicated

a good fit for all stimuli (M = 0.99± 0.12, Min = 0.73, Max = 1.28).

The stimulus time intensity estimates δk are reported in Table 5.3. A significant effect of

the stimulus categories was found on the stimulus time intensity estimates (F (4, 36) = 37.41,

p < .001, Adjusted R2 = 0.78). The exemplars of both the target objects categories required
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the least amount of time for getting a response (BDark = −0.09, SE = 0.01, t(36) = −8.99,

p < .001, and BMilk = −0.04, SE = 0.01, t(36) = −4.09, p < .001). The exemplars of the

category Bad were the stimuli that required the largest amount of time for getting a response

(B = 0.05, SE = 0.01, t(36) = 6.20, p < .001), followed by those belonging to the category

Good (B = 0.03, SE = 0.01, t(36) = 3.70,p < .001). It was possible to identify stimuli with

time intensity estimates far away from the time intensity estimates of the stimuli belonging

to the same category. For instance, stimulus heaven (b = 0.08) was the stimulus requiring

more time within the category Good (M = 0.03± 0.03).

Relationship between model estimates, typical scoring, and explicit measures

A speed-differential was computed as the difference between the condition–specific speed

estimates (i.e., τMGDB−τDGMB), so that positive values indicated a higher speed in the DGMB

condition than in the opposite one.

Results of Pearson’s correlations computed between the explicit preferences for milk and

dark chocolate, the D scores, ability estimates, condition–specific speed estimates, and speed-

differential are reported in Table 5.4.

Table 5.4
Correlation between model estimates, explicit measures, and D scores.

1 2 3 4 5 6 7

1 - Explicit Milk
2 - Explicit Dark −0.51∗∗∗

3 - D −0.43∗∗∗ 0.51∗∗∗

4 - τDGMB 0.12 −0.43∗∗∗ −0.60∗∗∗

5 - τMGDB −0.36∗∗ 0.14 0.42∗∗∗ 0.42∗∗∗

6 - θp 0.01 0.18 0.06 0.07 0.18

7 - Speed-differential −0.41∗∗∗ 0.55∗∗∗ 0.95∗∗∗ −0.67∗∗∗ 0.39∗∗∗ 0.07

Note: ∗∗∗ p < .001, ∗∗ p < .01, D: IAT D score, τ : speed estimate, θ: Ability estimate,
DGMB: Dark-Good/Milk-Bad condition, MGDB: Milk-Good/Dark-Bad condition, Speed-

differential: τMGDB − τDGMB.



130 CHAPTER 5. APPLICATIONS OF (G)LMMS TO IAT DATA

Each explicit chocolate evaluation strongly correlated with the D score, consistent with

the direction of its computation. The sign and magnitude of the correlations between explicit

evaluations and speed estimates in the condition where the target object was associated with

Good exemplars indicated that the higher the positive explicit evaluation of the chocolate,

the faster the responses in that condition. The sign of the correlation coefficients between

the D score and the condition–specific speed estimates were consistent with the direction of

the D score computation. Their magnitude suggested that the speed in the DGMB condition

mostly contributed to the final score. Similarly, the magnitude of the correlations between the

condition–specific speed estimate and the speed-differential indicated a higher contribution

of the speed in the DGMB condition to the final score.

Predictive ability of a behavioral outcome

The information provided by the difference between the condition–specific easiness estimates

was used to create two smaller data sets. The starting data set was composed of 8,879 ob-

servations. In a first data set (called “best”), only the responses to the stimuli that gave the

highest contribution to the IAT effect were selected (bolded stimuli in Table 5.3). This data

set resulted in 2,941 observations, ranging from 38 to 41 observations per participant. In a

second data set (called “worst”), only the responses to the stimuli giving the lowest contri-

bution to the IAT effect were selected (italicized stimuli in Table 5.3). This data set resulted

2,587 observations, ranging from 38 to 42 observations per participant. The D4 algorithm

was computed for both the Best data set and the Worst data set. In both cases, the data set

was reduced to about 1/3 of the total number of observations.

Both the predictive abilities of the differential measures (i.e., the D score and the speed-

differential) and of the linear combination of their single components (i.e., MMGDB and MDGMB

for the D score, τMGDB and τDGMB for the speed-differential) were investigated. Eight logis-

tic regression models were specified, including one of the relevant predictors (or their linear

combination) at the time. Results of backward deletion are reported in Table 5.5. The speed-

differential showed a slightly better general accuracy, due to a small gain in the DCC accu-

racy, than the D score. Interestingly, the D scores computed on both the “best” and “worst”
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Table 5.5
Choice prediction results for the differential measures and their Single components.

Predictors log-odds SE Nagelkerke R2 Gen DCC MCC

Differential measures

Intercept −1.65∗∗ 0.51 0.26 0.66 0.70 0.61

D score −2.03∗∗∗ 0.60

Intercept −1.65∗∗∗ 0.48 0.26 0.68 0.72 0.61

Speed-differential −5.02∗∗∗ 1.43

Intercept −1.76∗∗∗ 0.52 0.30 0.70 0.74 0.65

D score (Best) −2.07∗∗∗ 0.58

Intercept −1.23∗∗∗ 0.42 0.18 0.69 0.72 0.65

D score (Worst) −1.40∗∗∗ 0.47

Single components

Intercept −0.23 1.36 0.27 0.65 0.74 0.52

MDGMB 0.00∗∗ 0.01

MMGDB −0.01∗∗ 0.01

Intercept −2.05∗ 0.74 0.27 0.72 0.74 0.68

τDGMB 4.73∗∗∗ 1.48

τMGDB −5.99∗∗∗ 1.98

Intercept −0.17 1.61 0.30 0.65 0.74 0.52

MDGMB (Best) 0.00∗∗∗ 0.01

MMGDB (Best) −0.01∗ 0.01

Intercept 0.61 1.23 0.16 0.64 0.77 0.45

MDGMB (Worst) 0.00∗ 0.01

MMGDB (Worst) 0.00∗ 0.01

Note: ∗∗∗ p < .001, ∗∗ p < .01, ∗ p < .05, log-odds: Log-odds of the probability of choos-
ing milk chocolate, Best: Highly contributing stimuli data set, Worst: Lowly contributing
stimuli data set, τ : Speed estimate, speed-differential: differential measure computed
as τMGDB − τDGMB, DGMB: Dark-Good/Milk-Bad associative condition, MGDB: Milk-
Good/Dark-Bad condition.

data sets showed a better general accuracy than both the entire data set D score and the speed-

differential. The “best” data set D score showed the highest general accuracy, resulting from
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a gain in both the DCC and MCC accuracies. It also explained the highest proportion of vari-

ance. Conversely, the “worst” data set D score explained the lowest proportion of variance.

All the single components of the D score showed log-odds for the choice prediction near

zero, regardless of the data set on which they were computed. Therefore, they did not add

anything to the prediction provided by the intercept (i.e., the expected log-odds of the prob-

ability of choosing milk chocolate). The single components computed on the entire data set

and the “best” data set showed the same general, DCC, and MCC accuracies. The single com-

ponents computed on the “worst” data set showed a slightly lower general accuracy, due to a

loss in the MCC accuracy, although it was counterbalanced by a gain in the DCC accuracy.

The condition–specific speed estimates resulted in the highest general accuracy, due to a

gain in the MCC accuracy.

5.2.4 Final remarks

Results of the study reported in this section corroborate the higher reliability of the estimates

obtained with statistical models able to account for the IAT error variance than that of the

typical scoring methods of the IAT. The information at the stimulus level can be successfully

used to reduce the across-trial variability, hence resulting in a better IAT measure as expressed

by the D score.

The results on the speed and accuracy performance of the respondents were in line with

the results in the previous section and with the speed-accuracy trade-off in Klauer et al.

(2007).

The condition–specific stimulus estimates highlighted that the IAT effect was mostly

driven by Good attributes and Milk chocolate exemplars. As such, it can be speculated that it

is more the like for milk chocolate than the dislike for dark chocolate that drives the IAT ef-

fect. Consistent with this result, the magnitude of the correlations between condition–specific

speed estimates and both the D score and the speed-differential suggest that the speed in the

MGDB condition has a major influence on the final score.

Also the overall time intensity estimates provided useful information on the functioning of
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the stimuli. The time intensity estimates highlighted different processing times both between

stimulus categories (i.e., images require less time for getting a response than attributes) and

within the same stimulus category (i.e., the stimuli showing a time intensity estimate far away

from the estimates of the stimuli belonging to the same category).

Finally, by selecting the stimuli that gave the highest contribution to the IAT effect, a D

score resulting in a better prediction of the choice can be obtained. The stimulus estimates

provided by these models allow for highlighting the most representative and prototypical ex-

emplars of each category. As such, it is possible to select the two best working stimuli to

design valid and highly informative IATs, in line with what suggested by Nosek et al. (2005).

Given that a lower number of stimuli is presented to the respondents, the number of trials

can be reduced without losing information. As such, the administration time of the IAT can

be shortened. The reduction of the administration time might be useful both in a laboratory

setting and in online experiment. In a laboratory setting, the experimenter can control po-

tential artifacts disrupting the administration and hence the performance of the respondent

(e.g., the respondent gets distracted and/or tired). Nonetheless, having an IAT that requires

less administration time gives the possibility of administering multiple measures and, most

importantly, of not tiring out the respondents. In an online setting, a shorter administration

time is definitely a good incentive for the participation, and might prevent respondents from

withdrawal out of boredom and/or tiredness.
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Chapter 6

Multiple implicit measures: Models specification

As already illustrated in Chapter 2, the IAT and the SC-IAT can be administered together

for obtaining both a comparative measure of the preference for one target object over the other

and an absolute evaluation towards each of them. Their data are usually analyzed separately,

and separate D scores are computed for each measure, following an approach such as that in

Chapter 2. By doing so, neither the sources of variability due the fully-crossed structure of

each implicit measure nor those due to the presentation of multiple implicit measures to the

same respondents are accounted for. Additionally, no attempts of modeling the SC-IAT data

within a Rasch framework or of having a comprehensive model for the IAT and the SC-IAT

have been made so far. In this chapter, we aim to fill these gaps by introducing a comprehen-

sive modeling approach for multiple implicit measures (i.e., the IAT and the SC-IAT). This

modeling framework is obtained by exploiting the flexibility of Linear Mixed-Effects Models

(LMMs) to obtain the estimates of the Rasch and log-normal model parameters.

Two levels of model complexity are presented. At a first level, each implicit measure

is modeled separately by employing the models presented in Chapter 4. These models will

not be further illustrated here. Only a brief summary of the Rasch and log-normal model

parameters that can be estimated from their random structure is provided. At a second level,

the between–measures variability is accounted for by considering the within–respondents

between–measures variability (Model 2) or the within–respondents between–conditions vari-

ability across implicit measures (Model 3).

The IAT and the SC-IAT data have been analyzed separately mainly for two reasons: (i) to

investigate whether the modeling approach for the IAT data in Chapter 4 can be extended to
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the SC-IAT data, and (ii) to investigate whether and how these estimates are different from the

ones obtained with a more sound approach that accounts for the between–measures sources

of variability.

6.1 Single measures models

The models presented in Chapter 4 for both accuracy and log-time responses can be used

for modeling each implicit measure separately. As such, the between–measures variability at

both the respondent and stimulus levels can still affect the parameter estimates, event though

the variability within each measure is accounted for. Nonetheless, this approach is valid when

implicit measures are administered as stand alone measures.

Irrespective of the implicit measure or the dependent variable, the fixed intercept is set at

0. The effect of the associative condition of each implicit measure is specified as the fixed

slope in all models. Since the fixed intercept is set at 0, the estimates of the fixed slope can

be interpreted as the estimates of either the expected log-odds of the probability of a correct

response in each associative condition (Accuracy models) or the expected average log-time

responses in each associative condition (Log-time models).

Model 1 accounts for the between–respondents and between–stimuli variability across

associative conditions by specifying the random intercepts of the respondents and the stimuli

across the associative conditions. For each separate implicit measure (m ∈ {1, . . . ,M},

where m is the number of implicit measures), overall respondent (θpm and τpm) and stimulus

estimates (bsm and δsm) of the Rasch and log-normal models are obtained.

The random structure of Model 2 (i.e., random slopes of the stimuli in the associative

conditions and random intercepts of the respondents across the associative conditions) re-

sults in the estimation of condition–specific stimulus parameters (bscm and δscm) and over-

all respondent parameters (θpm and τpm) for each implicit measure. This model accounts

for the within–stimuli between–conditions variability and the between–respondents across–

conditions variability.

Finally, the random structure of Model 3 (i.e., random intercepts of the stimuli across the
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associative conditions and random slopes of the respondents in the associative conditions)

results in the estimation of overall stimulus parameters (bsm and δsm) and condition–specific

respondent parameters (θpcm and τpcm). This model accounts for the between–stimuli across–

conditions variability and the within–respondents between–conditions variability.

By separately analyzing the data obtained from implicit measures originally adminis-

tered together, the within–respondents between–measures variability and the within–stimuli

between–measures variability are neglected. Therefore, the estimates of the models parame-

ters can still be affected by error variance components. Moreover, since the estimates of the

respondents and the stimuli are obtained from separate and independent models they cannot

be directly compared between each other.

The models presented in Section 6.2 overcome this issue by considering data of different

implicit measures altogether.

6.2 Comprehensive models

The models presented in this section are identified by the superscript “C” (i.e., “Compre-

hensive”). Data from the IAT and the SC-IATs are considered and modeled together. In all

models, the fixed intercept is set at 0, while the fixed slope varies. Specifically, in the Null

model and in Model 2C, the fixed slope β is the type of implicit measure, while in Model 3C

the fixed slope β is the effect of the associative condition of each implicit measure.

The GLMMs and LMMs differ from each other only according to the dependent variable

and the assumption on the distribution of the error term. GLMMs (Section 6.2.1) are applied

on the accuracy responses, and the error term εi is assumed to follow a logistic distribution.

These models are identified with a capital “A”. LMMs (Section 6.2.2) are applied on the log-

time responses and the error term εi is assumed to follow a normal distribution. These models

are identified with a capital “T”.

In all models, only the between–stimuli across–measures variability is considered. The

investigation of the functioning of the stimuli according to the specific implicit measure

would indeed provide interesting information. For instance, the SC-IAT is known to be an
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easier task than the IAT. By having an information at the stimulus level, it would be possible

to understand whether only some of the stimuli make the task easier. Nonetheless, a high

within–stimuli between–measures variability is needed to specify the random slopes of the

stimuli in each implicit measure, but previous studies (e.g., Epifania, Robusto, & Anselmi,

2020c, 2020a) already highlighted a low within–stimuli between–conditions variability, es-

pecially for what concerns the time responses. Moreover, the focus is more oriented on

understanding the intra- and inter-individuals differences in performing at different implicit

measures. Consequently, multidimensionality of the error variance was allowed only at the

level of the respondents.

6.2.1 Comprehensive GLMMs

In both Model A1C and Model A2C, the type of measure is specified as the fixed slope,

providing the estimates of the expected log-odds of the probability of a correct response in

each implicit measure. Since these estimates are obtained from the same model, they can be

directly compared between each other. Model A1C is considered as the Null model:

yi = logit−1(α + βmXm + αp[i] + αs[i] + εi), (6.1)

with

αp ∼ N (0, σ2
αp
) andαs ∼ N (0, σ2

αs
), (6.2)

where the random intercepts of both the respondents and the stimuli across the associative

conditions and across the implicit measures are specified. Model A1C results in overall re-

spondent ability estimates (θC
p ) and overall stimulus easiness estimates (bC

s ) of the Rasch

model. These estimates inform about the overall ability of the respondents to perform the

categorization task and the overall easiness of the stimuli across associative conditions and

implicit measures. This model should be preferred when a low within–respondents and

between–measures variability and a low within–stimuli between–measures variability are
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observed. The lack of variability at both levels might already indicate that the ability of

the respondents is not affected by the specific implicit measure (i.e., their ability is constant

across measures). Similarly, stimuli easiness does not vary across implicit measures.

In Model A2C, the between–stimuli variability across implicit measures and the within–

respondents between–measures variability are accounted for by specifying the random in-

tercepts of the stimuli across associative conditions and implicit measures and the random

slopes of the respondents in the implicit measures across the associative conditions:

yi = logit−1(α + βmXm + αk[i] + βp[i]mi + εi), (6.3)

with:

βpm ∼ MVN (0,Σpm), (6.4)

αs ∼ N (0, α2
s), (6.5)

where Σpm is the variance-covariance matrix of the population of respondents and it ex-

presses the by-respondents variability according to the implicit measure. Model A2C results

in overall stimuli easiness estimates across implicit measures (bC
s ) and measure–specific re-

spondents’ ability estimates (θC
pm). A high within–respondents between–measures variability

is needed for this model to be the best fitting one, suggesting that the ability performance of

the respondents is affected by the specific implicit measure. The estimates provided by this

model can hence inform about the change in the ability performance of the respondents in

each implicit measure. However, no information on the effect of the associative condition is

available.

The random structure of Model A3C accounts for the between–stimuli across–conditions

and across–measures variability and the within–respondents between–conditions and between–

measures variability. The random intercepts of the stimuli across associative conditions and

implicit measures and the random slopes of the respondents in the associative conditions are
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specified. The associative conditions of each measure is specified as the fixed slope:

yi = logit−1(α + βcXc + αs[i] + βp[i]ci + εi), (6.6)

with:

βpc ∼ MVN (0,Σpc), (6.7)

αs ∼ N (0, α2
s), (6.8)

where Σpc is the variance-covariance matrix of the population of the respondents, expressing

the by-respondent adjustment in each associative condition of each implicit measure. Model

A3C results in overall stimulus easiness estimates (bC
s ) and condition–specific respondent abil-

ity estimates for each implicit measure (θC
pmc). Model A3C requires a high within–respondents

between–conditions variability to result as the best fitting model. The high variability be-

tween the responses of the participants in each condition of each measure already stands for

an effect of the associative conditions of each implicit measure on the performance of the re-

spondents. By taking the difference between the condition–specific estimates of each implicit

measure, a measure of the bias on the performance of the respondents due to the associative

conditions can be obtained.

6.2.2 Comprehensive LMMs

Models with the same random structures as those presented in Section 6.2.2 are specified for

obtaining the log-normal model estimates from the log-time responses. The fixed slope in

both Model T1C and Model T2C is the type of implicit measure, providing the expected av-

erage log-times in each implicit measure. Model T1C accounts for the between–respondents

and the between–stimuli variability across implicit measures. As such, it is taken to be the
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Null model:

yi = α + βmXm + αp[i] + αs[i] + εi, (6.9)

with

αp ∼ N (0, σ2
αp
), andαs ∼ N (0, σ2

αs
), (6.10)

where the random intercepts of both the respondents and the stimuli across the associative

conditions and across the implicit measures are specified. The random structure specification

of Model T1C results in the estimation of overall respondent speed parameters (τC
p ) and over-

all stimulus time intensity parameters (δC
s ). Consequently, only an overall information on the

performance of the respondents and the functioning of the stimuli across implicit measures

is available.

Model T2C accounts for the between–stimuli variability across implicit measures and the

within–respondents between–measures variability by specifying the random intercepts of the

stimuli across associative conditions and implicit measures and the random slopes of the

respondents in the implicit measures across associative conditions:

yi = α + βmXm + αs[i] + βp[i]mi + εi, (6.11)

with:

βpm ∼ MVN (0,Σpm), (6.12)

αs ∼ N (0, α2
s), (6.13)

where Σpm represents the variance-covariance of the population of the respondents, express-

ing their variability due the effect of the implicit measure. Model T2C results in overall stimuli

time intensity estimates across implicit measures (δC
s ) and measure–specific respondent speed

estimates (τC
pm). A high within–respondents between–measures variability is needed for this
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model to be the best fitting one. This variability indicates that the speed of the respondents is

affected by the specific implicit measure. However, it is not possible to rule out the possibility

that this variability is due to the effect of the associative conditions.

The variability due to the effect of the associative conditions of each implicit measure

can be understood with the random structure specification of Model T3C. The associative

conditions of each measure is specified as the fixed slope. This model accounts for the within–

respondents between–conditions and between–measures variability and the within–stimuli

across–conditions and across–measures variability by specifying the random slopes of the

respondents in the associative conditions and the random intercepts of the stimuli across

associative conditions and implicit measures, respectively:

yi = α + βcXc + αs[i] + βp[i]ci + εi, (6.14)

with:

βpc ∼ MVN (0,Σpc), (6.15)

αs ∼ N (0, α2
s), (6.16)

where Σpc represents the variance-covariance matrix of the population of the respondents,

expressing the variability due to their adjustments to each of the associative conditions in

each of the implicit measures. Model T3C results in overall stimuli time intensity estimates

(δC
s ) and condition–specific respondents’ speed estimates, for each implicit measure (τC

pmc).

Model T3C should be preferred when a high within–respondents between–conditions vari-

ability is observed. The high variability between respondents’ in each condition of each

measure stands for an effect of the associative conditions determined by each implicit mea-

sure on respondents’ performance. By taking the difference between the condition–specific

estimates of each implicit measure for each respondent, a measure of the bias on respondents’

performance due to the associative conditions can be obtained.
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A measure of the bias due to the associative conditions of each implicit measure can

be obtained from the estimates provided by the Single measures models in Section 6.1 as

well. However, as already stated, those estimates are affected by both the within–respondents

between–measures variability and the within–stimuli between–measures variability. Con-

versely, these sources of variability are accounted for in the comprehensive modeling frame-

work, potentially resulting in more reliable estimates. Moreover, the estimates obtained with

the comprehensive modeling approach are directly comparable between each other because

they are derived from the same model.

In the next chapter, an empirical application of the comprehensive modeling framework

and the separate modeling of each implicit measure is illustrated. The estimates of the Rasch

model parameters and those of the log-normal model parameters are used for predicting a

behavioral outcome, and their predictive performances are compared with those of the typical

scoring method of the IAT and the SC-IAT. The relationship between the model estimates and

the typical scores of these implicit measures are investigated as well.
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Chapter 7

Multiple implicit measures: Empirical applications

In this chapter, the accuracy and log-time responses of the IAT and the SC-IAT have been

analyzed following both the single measures (Section 6.1) and comprehensive (Section 6.2)

approaches.

Table 7.1 summarizes the Rasch and log-normal model parameters that can be obtained

from the random structures specification in Chapter 6. The fixed slopes of each model are

illustrated in the Table as well.

Accuracy and log-time models were fitted with the lme4 package (Bates, Mächler, et al.,

2015) in R (Version 3.5.1, R Core Team, 2018) (bobyqa Optimizer). The D scores of the

IAT and the SC-IATs were computed with the implicitMeasures package (Epifania,

Anselmi, & Robusto, 2020d). The R code that can be used for estimating the models is

reported in Appendix B

7.1 Method

A Chocolate IAT, a Milk Chocolate SC-IAT, and a Dark Chocolate SC-IAT were used. Data

are the same as those in Chapter 2.

For the description of the sample, the stimuli and the materials employed please refer to

Section 2.3.1 of Chapter 2.
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Table 7.1
Overview of the accuracy and log-time models.

Model Fixed slope Respondents Stimuli

Single measures models
A1 Associative condition Overall (θpm) Overall (bsm)
T1 Associative condition Overall (τpm) Overall (δsm)
A2 Associative condition Overall (θpm) Condition–specific (bscm)
T2 Associative condition Overall (τpm) Condition–specific (δscm)
A3 Associative condition Condition–specific (θpcm) Overall (bsm)
T3 Associative condition Condition–specific (τpcm) Overall (δs)

Comprehensive models
A1C Implicit measure Overall (θC

p ) Overall (bC
s )

T1C Implicit measure Overall (τC
p ) Overall (δC

s )
A2C Implicit measure Measure–specific (θC

pm) Overall (bC
s )

T2C Implicit measure Measure–specific (τC
pm) Overall (δC

s )
A3C Associative condition Condition–specific (θC

pcm) Overall (bC
s )

T3C Associative condition Condition–specific (τC
pcm) Overall (δC

s )

Note: p ∈ {1, . . . , P}, s ∈ {1, . . . , S}, c ∈ {1, . . . , C}, m ∈ {1, . . . ,M}, denote any respondent, stimulus,
condition, implicit measure, where P , S, C, and M are the number of respondents, stimuli, conditions, and
implicit measures respectively, C: Estimates obtained with a comprehensive modeling of IAT and SC-IAT
responses.

7.2 Data analysis

Data cleaning and typical scoring of implicit measures

The D4 algorithm in Greenwald et al. (2003) is used for scoring the IAT (i.e., trials > 10,000

ms are discarded, incorrect responses are replaced with the average response time inflated by

a 600 ms penalty). The difference is taken between the average response time in the Milk-

Good/Dark-Bad condition (MGDB) and that in the Dark-Good/Milk-Bad condition (DGMB).

Positive scores stand for a possible preference for dark chocolate over milk chocolate.

The procedure in Karpinski and Steinman (2006) is followed for scoring the SC-IATs (i.e.,
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trials < 350 ms were discarded, incorrect responses were replaced by the average response

time inflated by a 450 ms penalty). The difference is computed between the average response

time in the condition where the target chocolate is associated with negative attributes and that

where it is associated with positive attributes. Positive scores stand for a positive evaluation

of the target chocolate.

The raw log-times of both correct and incorrect responses are used for the estimation of

the log-normal models. No correction on the incorrect responses is applied.

Relationship between model estimates and typical scoring

The relationship between the Rasch and log-normal model estimates and the typical scores of

implicit measures are investigated. Both the estimates obtained from the separate modeling

of each implicit measure (i.e., single measure models) and those obtained from the compre-

hensive modeling (i.e., comprehensive model) are used.

Regardless of the dependent variable (either accuracy responses or log-time responses)

and the type of modeling (single measure vs comprehensive), if the best fitting model re-

sults in condition–specific respondent estimates, differential measures are computed. The

differential measures (i.e., ability-differential and/or speed-differential) express the bias on

the accuracy or speed performance of the respondents due to the effect of the associative

conditions.

The model estimates are used to predict the respective typical scoring of each implicit

measure. A stepwise approach with forward selection is followed to select the predictors best

accounting for the dependent variable. All full models are compared against the same Null

model, including only the estimation of the intercept (i.e., expected average of the typical

score).

Prediction of a behavioral outcome

The predictive abilities of the Rasch and log-normal model estimates are compared with that

of the typical scoring methods of implicit measures. In case the best fitting model allows
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for the multidimensionality at the respondent level, the differential measures (i.e., ability-

differential and/or speed-differential) are used for the prediction of the behavioral outcome

as well. Dark chocolate choice (DCC) is labeled as 0 and milk chocolate choice (MCC) is

labeled as 1. The predictive ability of the linear combination of the IAT D score with the

single SC-IAT D scores (i.e., D-Dark and D-Milk scores) and that of the linear combination

of the IAT D score with a differential SC-IAT score (i.e., D-Sciat, difference between D-

Dark and D-Milk scores) are investigated. The linear combinations of the single components

of each typical scoring (i.e., the average response time computed on the corrected latencies

in each associative conditions) are considered as well for predicting the choice.

A stepwise approach with forward selection is followed, and Nagelkerke’s R2 (Nagelkerke,

1991) is computed as a Pseudo R2. To investigate the linear combination of the predictors

that best accounts for the choice, the general accuracy (i.e., the ratio between the choices

correctly identified by the model and the total number of choices), the DCCs accuracy (i.e.,

the ratio between the DCCs correctly identified by the model and the number of observed

DCCs), and the MCCs accuracy (i.e., the ratio between the MCCs correctly identified by the

model and the number of observed MCCs) of the models resulting from forward selection

are computed.

7.3 Results

Data from nine participants were discarded. Eight of them explicitly reported not under-

standing the tasks they were asked to perform in either the IAT or one of the SC-IATs. One

participant showed too many fast responses, specifically in the Dark SC-IAT (more than 30%

of responses with a latency lower than 350ms) and was removed. The final sample was com-

posed of 152 participants (F = 63.82%, Age = 24.03 ± 2.82). The milk chocolate bar was

chosen by the 48.03% of the participants.

The descriptive statistics of the response times for each implicit measure (and their asso-

ciative conditions) are reported in Section 2.3.3 of Chapter 7. The descriptive statistics of the

log-response times are here reported.
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In the IAT, the overall average log-response time was −0.26 log-seconds (sd = 0.43,

skewness = 0.90, kurtosis = 2.34). The average log-response time in the DGMB condition

was −0.14 log-seconds (sd = 0.45, skewness = 0.56, kurtosis = 2.72) and that in the MGDB

condition was −0.37 log-seconds (sd = 0.37, skewness = 1.32, kurtosis = 2.69).

The overall average log-response time in the Dark SC-IAT was −0.46 log-seconds (sd =

0.35, skewness = 1.33, kurtosis = 3.21). The average log-response time in the DB condition

was −0.47 log-seconds (sd = 0.35, skewness = 1.31, kurtosis = 3.17) and that in the DG

condition was −0.45 log-seconds (sd = 0.35, skewness = 1.36, kurtosis = 3.25).

The overall average log-response time in the Milk SC-IAT was −0.46 log-seconds (sd

= 0.34, skewness = 1.18, kurtosis = 4.03). The average log-response time in the MB

condition was −0.44 log-seconds (sd = 0.34, skewness = 1.78, kurtosis = 4.03) and that in

the MG condition was −0.48 log-seconds (sd = 0.33, skewness = 1.18, kurtosis = 4.09).

7.3.1 Single measures models

Accuracy models

Model comparison is reported in Table 7.2 (i.e., models identified with a capital “A”).

Table 7.2
Model comparison - Single measures.

Accuracy Models Log-time Models
Model AIC BIC Log-Likelihood Deviance Model AIC BIC Log-Likelihood Deviance

IAT A1 6733.40 6764.60 −3362.70 6725.40 T1 16258.00 16297.00 −8123.90 16248.00

A2 6719.20 6766.00 −3353.60 6707.20 T2 Aberrant estimates
A3 6631.10 6678.00 −3309.60 6619.10 T3 14903.00 14957.00 −7444.30 14889.00

Dark
SC-IAT

A1 8122.90 8154.90 −4057.40 8114.90 T1 12160.00 12200.00 −6075.10 12150.00

A2 8125.70 8173.70 −4056.90 8113.70 T2 Aberrant estimates
A3 8013.10 8061.10 −4000.60 8001.10 T3 11973.00 12029.00 −5979.70 11959.00

Milk
SC-IAT

A1 8074.50 8106.40 −4033.20 8066.50 T1 12362.00 12402.00 −6176.20 12352.00

A2 8045.30 8093.20 −4016.60 8033.30 T2 Aberrant estimates
A3 7925.20 7973.10 −3956.60 7913.20 T3 12120.00 12176.00 −6052.80 12106.00

Note: “A”: Accuracy Models, “T”: Log-time models

Model A3 resulted as the best fitting model for all implicit measures. Respondent condition–
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specific ability estimates (θDGMB, θMGDB, θDG, θDB, θMG, θMB), and overall stimulus easiness

estimates bsm of the Rasch model for each implicit measure were obtained.

A higher probability of a correct response was observed in the MGDB condition (log-

odds = 4.00, SE = 0.13), in the DB condition (log-odds = 3.49, SE = 0.12), and in the MG

condition (log-odds = 3.49, SE = 0.11), than in their respective contrasting ones (log-odds

= 2.87, SE = 0.08, log-odds = 3.28, SE = 0.11, and log-odds = 3.30, SE = 0.11, in the

DGMB, DG, and MB conditions, respectively). The respondents showed higher variabilities

in the MGDB condition (σ2 = 1.05), in the DB condition (σ2 = 0.83), and in the MB

condition (σ2 = 0.76) than in their respective contrasting conditions (σ2
DGMB = 0.46, σ2

DG =

0.65, and σ2
MG = 0.69). The variabilities at the stimulus level were 0.04, 0.17, and 0.16 for

the IAT, the Dark SC-IAT, and the Milk SC-IAT, respectively.

The easiness estimates of the stimuli for the IAT, the Dark SC-IAT, and the Milk SC-

IAT are reported in Table 7.3. A significant effect of the stimulus categories on the easiness

estimates was found in the IAT (F (4, 36) = 3.40, p = 0.02, Adjusted R2= 0.19), while in

both the SC-IATs it was not significant (Dark SC-IAT: F (3, 30) = 2.81, p = 0.06, Adjusted

R2= 0.14 and Milk SC-IAT: F (3, 30) = 1.98, p = 0.14, Adjusted R2= 0.08).

In the IAT, the target object Dark was the most difficult category (B = −0.15, SE = 0.05,

t(36) = −3.05, p < .001). No significant effects were found for other stimulus categories

(BMilk = −0.01, SE = 0.05, t(36) = −0.16, p = 0.89, BBad = −0.05, SE = 0.04, t(36) =

−1.28, p = 0.20, and BGood = 0.06, SE = 0.04, t(36) = −1.62, p = 0.11).



Table 7.3
Single measure models: Stimuli easiness estimates (bsm) and time intensity estimates (δsm).

b δ b δ

IAT Dark SC-IAT Milk SC-IAT IAT Dark SC-IAT Milk SC-IAT IAT Dark SC-IAT Milk SC-IAT IAT Dark SC-IAT Milk SC-IAT

Bad attributes Good attributes

agony −0.14 −1.06 −1.03 0.09 0.08 0.08 beautiful −0.01 −0.36 −0.02 0.01 −0.01 0.01

annoying −0.30 −0.92 −0.70 0.11 0.12 0.12 excellent 0.12 −0.06 0.03 0.02 0.05 0.07

bad −0.21 0.04 0.07 0.04 0.01 0.01 glory −0.18 0.44 0.37 0.04 0.02 0.03

disaster 0.23 0.17 0.52 0.05 0.05 0.02 good 0.18 −0.26 −0.22 0.01 0.04 0.01

disgust −0.05 0.07 0.15 0.03 0.02 0.01 happiness 0.09 0.57 0.53 0.02 −0.01 0.01

evil 0.04 0.01 −0.14 0.05 0.02 0.01 heaven 0.01 −0.02 −0.11 0.05 0.04 0.03

failure 0.04 0.14 −0.12 0.07 0.06 0.05 joy 0.13 0.52 0.23 0.02 −0.02 −0.01

hate −0.07 −0.18 0.06 0.02 −0.02 −0.01 laughter 0.18 0.23 0.26 0.05 0.02 0.03

horrible −0.03 −0.05 0.45 0.05 0.03 0.01 love 0.10 0.43 0.21 0.02 −0.05 −0.03

nasty 0.01 0.45 0.60 0.02 0.01 0.01 marvelous−0.01 −0.19 −0.32 0.07 0.08 0.08

pain −0.14 −0.26 −0.35 0.06 0.06 0.03 peace 0.04 0.43 0.08 0.02 −0.01 −0.03

terrible 0.12 −0.05 0.21 0.04 0.03 0.03 pleasure 0.01 0.41 −0.01 0.01 0.01 −0.01

ugly −0.09 −0.07 0.06 0.01 0.02 0.01 wonderful 0.12 −0.37 −0.56 0.04 0.08 0.06

M (SD) −0.05 (0.14) −0.13 (0.42) −0.02 (0.47) 0.05 (0.03) 0.04 (0.04) 0.03 (0.04) 0.06 (0.10) 0.14 (0.36) 0.03 (0.30) 0.03 (0.02) 0.02 (0.04) 0.02 (0.04)

Dark chocolate Milk chocolate

Dark 1 −0.44 −0.41 −0.10 −0.11 Milk 1 −0.10 −0.30 −0.04 −0.07

Dark 2 0.10 −0.36 −0.10 −0.11 Milk 2 0.01 −0.28 −0.07 −0.08

Dark 3 −0.10 −0.14 −0.07 −0.08 Milk 3 −0.08 −0.31 −0.06 −0.07

Dark 4 −0.15 −0.23 −0.07 −0.10 Milk 4 −0.17 −0.38 −0.05 −0.10

Dark 5 −0.15 −0.41 −0.11 −0.10 Milk 5 0.16 −0.37 −0.06 −0.08

Dark 6 −0.13 −0.18 −0.09 −0.11 Milk 6 0.17 −0.38 −0.05 −0.10

Dark 7 −0.18 −0.27 −0.10 −0.11 Milk 7 −0.03 −0.22 −0.05 −0.08

M (SD) −0.15 (0.16) −0.29 (0.10) −0.09 (0.02) −0.10 (0.01) −0.01 (0.13) −0.32 (0.06) −0.05 (0.01) −0.08 (0.01)
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Despite in both the SC-IATs the overall effect of the stimulus categories was not signif-

icant, a significant effect of the target object categories was found in both the Dark SC-IAT

(BDark = −0.29, SE = 0.13, t(30) = −2.15, p = 0.03) and the Milk SC-IAT (BMilk = −0.31,

SE = 0.13, t(30) = −2.41, p = 0.02). In both cases, the target objects tended to be the most

difficult stimuli. The effect of the evaluative dimensions was significant in neither the Dark

SC-IAT (BBad = −0.13, SE = 0.10, t(30) = −1.35, p = 0.19, and BGood = 0.14, SE

= 0.10, t(30) = −1.40, p = 0.17), nor in the Milk SC-IAT (BBad = −0.02, SE = 0.10,

t(30) = −0.17, p = 0.87, and BGood = 0.03, SE = 0.10, t(30) = 0.36, p = 0.72).

In all implicit measures, there were stimuli showing easiness estimates far away from

the estimates of the stimuli belonging to the same category, although the pattern was not

consistent between implicit measures. Take for example the stimulus glory (category Good).

In the IAT, it resulted as a particularly difficult stimulus (b = −0.18), also in respect to the

average level of easiness of the stimuli belonging to the same category (M = 0.06 ± 0.10).

In both SC-IATs, it resulted as a particularly easy stimulus (Dark SC-IAT: b = 0.44 and Milk

SC-IAT: b = 0.37), also in respect to the average level of easiness of its own category (Dark

SC-IAT: M = 0.14± 0.36, Milk SC-IAT: M = 0.03± 0.30).

Log-time models

Model comparison is reported in Table 7.2 (i.e., models identified with a capital “T”). Model

T2 produced aberrant estimates (i.e., correlation between stimuli random slopes equal to

one) in all implicit measures, suggesting a low within–stimuli between–conditions variability.

Model T3 was the best fitting model for all implicit measures. Consequently, condition–

specific respondent speed estimates (τDGMB, τMGDB, τDG, τDB, τMG,τMB) and overall stimulus

estimates δsm of the log-normal model were obtained for each implicit measure.

Faster responses were observed in the MGDB condition (B = −0.35, SE = 0.01), in the

DB condition (B = −0.45, SE = 0.02), and in the MG condition (B = −0.48, SE = 0.01),

than in their respective contrasting conditions (BDGMB = −0.11, SE = 0.02, BDG = −0.44,

SE = 0.03, and BMB = −0.43, SE = 0.01, for the IAT, the Dark SC-IAT, and the Milk SC-

IAT, respectively). The respondents showed similar variabilities in the two IAT conditions
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(σ2
DGMB = 0.05 and σ2

MGDB = 0.03), as well as similar variabilities in the two Milk SC-IAT

conditions (σ2
MB = 0.02 and σ2

MG = 0.01). The variability in the two Dark SC-IAT conditions

was the same (σ2 = 0.02). The stimulus variability was extremely low for all three measures

(0.004, 0.004, and 0.003 for the IAT, the Dark SC-IAT, and the Milk SC-IAT, respectively).

The time intensity estimates of the stimuli for the IAT, the Dark SC-IAT, and the Milk SC-

IAT are reported in Table 7.3. A significant effect of the stimulus categories on the stimuli

time intensity was found in all implicit measures (IAT: F (4, 36) = 63.49, p < .001, Adjusted

R2= 0.86, Dark SC-IAT: F (3, 30) = 28.05, p < .001, Adjusted R2= 0.71, and Milk SC-IAT:

F (3, 30) = 20.57, p < .001, Adjusted R2= 0.64).

In the IAT, the target object Dark required the least time for getting a response (B =

−0.09, SE = 0.01, t(36) = −11.10, p < .001), immediately followed by the target object

Milk (B = −0.05, SE = 0.01, t(36) = −6.43, p < .001). Both the evaluative dimensions

tended to require more time for getting a response (BBad = 0.05, SE = 0.01, t(36) = 8.25,

p < .001, and BGood = 0.03, SE = 0.01, t(30) = 4.62, p < .001).

In both the SC-IATs, significant effects were found for the corresponding target objects

(BDark = −0.10, SE = 0.01, t(30) = −8.05, p < .001 and BMilk = −0.08, SE = 0.01,

t(30) = −6.92, p < .001) and for the evaluative dimension Bad (Dark SC-IAT: B = 0.04,

SE = 0.01, t(30) = 3.91, p < .001 and Milk SC-IAT: B = 0.03, SE = 0.01, t(30) =

3.21, p < .001). The target objects required less time for getting a response, while the

evaluative dimension Bad required more time. The effect of the evaluative dimension Good

was significant in neither the Dark SC-IAT (B = 0.02, SE = 0.01, t(30) = 1.99, p = .05)

nor the Milk SC-IAT (B = 0.02, SE = 0.01, t(30) = 1.88, p = .07).

7.3.2 Comprehensive models

Accuracy models

Models A1C, A2C, and A3C were compared between each other. Model A3C (AIC = 22,365,

BIC = 22,618, Log-likelihood = −11,154, Deviance = 22,309) resulted as the best fitting

one (Model A1C: AIC = 22,991, BIC = 23,036, Log-likelihood = −11,490, Deviance =
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22,981, Model A2C: AIC = 22,906, BIC = 22,996, Log-likelihood = −11,223, Deviance

= 22,886), providing condition–specific respondents ability estimates for each implicit mea-

sure (θC
DGMB, θC

MGDB, θC
DG, θC

DB, θC
MG, and θC

MB), and overall stimulus easiness estimates across

implicit measures (bCs ) of the Rasch model.

The highest probability of a correct response was observed in the MGDB condition (log-

odds = 4.05, SE = 0.13), followed by that in the DB condition (log-odds = 3.45, SE = 0.11)

and that in the MG condition (log-odds = 3.41, SE = 0.10). The probability of a correct

response in the DG condition and that of a correct response in the MB condition were similar

(DG: log-odds = 3.23, SE = 0.10 and MB: log-odds = 3.21, SE = 0.10). The lowest

probability of a correct response was observed in the DGMB condition (log-odds = 2.92,

SE = 0.09). The MGDB condition was the one showing the highest respondent variability

(σ2 = 1.05), followed by that in the DG condition (σ2 = 0.84), and that in the MB condition

(σ2 = 0.75). The variability of the respondents in the DG condition and that in the MG

condition were similar (σ2
DG = 0.63 and σ2

MG = 0.64). The DGMB condition showed the

lowest variability (σ2 = 0.47). The variability at the stimuli level was 0.11.

The estimates of the easiness parameters obtained from Model A5 are reported in Table

7.4. A significant effect of the stimulus categories on their easiness estimates was found

(F (4, 36) = 2.83, p = 0.04, Adjusted R2= 0.15). The target object Dark was the most

difficult category (B = −0.24, SE = 0.11, t(36) = −2.28, p = 0.03). The target object

Milk was fairly difficult as well, although its effect was not significant (B = −0.17, SE

= 0.11, t(36) = −1.57, p = 0.13). Neither the effect of the category Bad (B = −0.03, SE

= 0.08, t(36) = −0.49, p = 0.63) nor that of the category Good (B = 0.14, SE = 0.08,

t(36) = 1.85, p = 0.07) were significant, although stimuli of the latter category tended to be

the easiest ones.

Log-time models

Models T1C, T2C, and T3C were compared between each other. Model T3C (AIC = 38,933,

BIC = 39,195, Log-likelihood = −19,437, Deviance = 38,875) resulted as the best fitting

one (Model T1C: AIC = 44,624, BIC = 44,678, Log-likelihood = -22,306, Deviance =
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Table 7.4
Comprehensive model: Stimuli easiness estimates (bC

s ) and time intensity estimates (δC
s ).

b δ b δ

Bad attributes Good attributes
agony −0.89 0.10 beautiful −0.13 0.01

annoying −0.74 0.13 excellent 0.10 0.06

bad −0.02 0.03 glory 0.26 0.04

disaster 0.47 0.05 good −0.07 0.03

disgust 0.11 0.03 happiness 0.55 0.01

evil 0.01 0.04 heaven −0.01 0.05

failure 0.07 0.08 joy 0.44 0.01

hate −0.05 0.01 laughter 0.36 0.04

horrible 0.18 0.04 love 0.37 −0.02

nasty 0.47 0.02 marvelous −0.17 0.09

pain −0.27 0.06 peace 0.27 0.01

terrible 0.17 0.05 pleasure 0.20 0.01

ugly 0.01 0.03 wonderful −0.30 0.08

M (SD) −0.04 (0.40) 0.05 (0.03) 0.14 (0.26) 0.03 (0.03)

Dark Chocolate Milk Chocolate
Dark 1 −0.49 −0.10 Milk 1 −0.22 −0.04

Dark 2 −0.14 −0.10 Milk 2 −0.14 −0.07

Dark 3 −0.13 −0.07 Milk 3 −0.21 −0.06

Dark 4 −0.21 −0.08 Milk 4 −0.30 −0.07

Dark 5 −0.32 −0.10 Milk 5 −0.09 −0.06

Dark 6 −0.17 −0.10 Milk 6 −0.10 −0.07

Dark 7 −0.25 −0.10 Milk 7 −0.12 −0.06

M (SD) −0.24 (0.13) −0.09 (0.01) −0.17 (0.08) −0.06 (0.01)

44,612, and Model T2C: AIC = 43,448, BIC = 43,548, Log-likelihood = −22,306, Deviance

= 44,612), providing condition–specific respondent speed estimates (τC
DGMB, τC

MGDB, τC
DG, τC

DB,

τC
MG,τ

C
MB) and overall stimulus time intensity estimates (δC

s ) of the log-normal model.

The responses in the IAT associative conditions tended to be slower (BDGMB = −0.12,
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SE = 0.02 and BMGDB = −0.35, SE = 0.02) than in the Dark SC-IAT associative conditions

(BDB = −0.47, SE = 0.02 and BDG = −0.45, SE = 0.02) and the Milk SC-IAT associative

conditions (BMB = −0.45, SE = 0.02 and BMG = −0.50, SE = 0.01).

The variabilities of the respondents were slightly higher in the IAT conditions (σ2
DGMB =

0.05 and σ2
MGDB = 0.03) than in both the associative conditions of the SC-IATs. Respondents

showed the same variability in the Dark SC-IAT associative conditions (σ2 = 0.02), and

a slightly different variability in the Milk SC-IAT associative conditions (σ2
MB = 0.02 and

σ2
MG = 0.01). The stimuli variability was extremely low (σ2 = 0.004).

The time intensity estimates of Model T3C are reported in Table 7.4. A significant effect

of the stimulus categories on their time intensity estimates was found (F (4, 36) = 42.93,

p < .001, Adjusted R2= 0.80). The target objects required a lower amount of time for getting

a response (BDark = −0.09, SE = 0.01, t(36) = −8.79, p < .001 and BMilk = −0.06, SE

= 0.01, t(36) = −5.85, p < .001) than both the evaluative dimensions (BBad = 0.05, SE

= 0.01, t(36) = 6.49, p < .001 and BGood = −0.09, SE = 0.01, t(36) = 4.25, p < .001).

7.3.3 Relationship between model estimates and typical scoring

Since condition–specific respondent estimates were available for both the Rasch and log-

normal models, differential measures for ability and speed estimates were computed. These

measures express the bias on the accuracy or speed performance of the respondents due to

the effect of the associative conditions. Ability differential measures were computed so that

positive scores stood for a higher ability in the DGMB condition than in the MGDB condition,

or a higher ability in the associative condition where the target chocolate was associated

with positive exemplars in the SC-IATs (the DG condition and the MG condition). Speed

differential measures were computed so that positive scores stood for higher speed in the

DGMB condition than in the opposite one, or higher speed in the condition where the target

chocolate was associated with positive attributes rather than with negative attributes.

A stepwise approach with forward selection was followed. The differential measures

and their respective single estimates components were entered in different models to avoid



7.3. RESULTS 157

collinearity. The Null model against which all full models were compared included only the

intercept (i.e., expected average of the typical score). The predictors included in the Full

models for each implicit measure are summarized in Table 7.5, as well as the predictors

resulting from stepwise forward selection.



Table 7.5
Relations between typical scoring and model estimates.

Predictors B SE Adjusted R2 Predictors B SE Adjusted R2

Single measure models
IAT Full model D score ∼ θDGMB + θMGDB + τDGMB + τMGDB D score ∼ (θDGMB − θMGDB) + (τMGDB − τDGMB)

Null - Intercept −0.58 ∗∗∗ 0.04 0.00

Intercept 0.07 0.10 0.89 Intercept 0.05 ∗ 0.03 0.89

θMGDB −0.14 ∗∗∗ 0.03 (τMGDB − τDGMB) 2.02 ∗∗∗ 0.08

θDGMB 0.16 ∗∗∗ 0.04 (θDGMB − θMGDB) 0.15 ∗∗∗ 0.03

τDGMB −1.94 ∗∗∗ 0.09

τMGDB 2.16 ∗∗∗ 0.10

Dark SC-
IAT

Full model D-Dark ∼ θDG + θDB + τDG + τDB D-Dark ∼ (θDG − θDB) + (τDB − τDG)

Null - Intercept −0.05 ∗∗ 0.02 0.00

Intercept 0.11 0.07 0.82 Intercept 0.03 ∗∗ 0.01 0.82

τDB 3.51 ∗∗∗ 0.15 (τDB − τDG) 3.46 ∗∗∗ 0.15

τDG −3.35 ∗∗∗ 0.16 (θDG − θDB) 0.18 ∗∗∗ 0.02

τDG 0.18 ∗∗∗ 0.02

τDB −0.18 ∗∗∗ 0.02

Milk SC-
IAT

Full model D-Milk ∼ θMG + θMB + τMG + τMB D-Milk ∼ (θMG − θMB) + (τMB − τMG)

Null - Intercept 0.32 ∗∗∗ 0.03 0.00

Intercept −0.31 ∗ 0.16 0.30 Intercept 0.21 ∗∗∗ 0.03 0.25

τMB 1.66 ∗∗∗ 0.27 (τMB − τMG) 1.77 ∗∗∗ 0.28

τMG −2.23 ∗∗∗ 0.31 (θMG − θMB) 0.13 ∗∗∗ 0.03

θMG 0.16 ∗ 0.03

θMB −0.09 ∗ 0.02

Comprehensive models
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Table 7.5
Relations between typical scoring and model estimates.

Predictors B SE Adjusted R2 Predictors B SE Adjusted R2

IAT Full model D score ∼ θC
DGMB + θC

MGDB + τDGMB + τC
MGDB D score ∼ (θC

DGMB − θC
MGDB) + (τC

MGDB − τC
DGMB)

Intercept 0.05 0.10 0.88 Intercept 0.03 0.03 0.88

τC
MGDB 2.18 ∗∗∗ 0.10 (τC

MGDB − τC
DGMB) 2.04 ∗∗∗ 0.08

τC
DGMB −1.95 ∗∗∗ 0.09 (θC

DGMB − θC
MGDB) 0.11 ∗∗∗ 0.02

θC
DGMB 0.13 ∗∗∗ 0.04

θC
MGDB −0.12 ∗∗∗ 0.02

Dark SC-
IAT

Full model D-Dark ∼ θC
DG + θC

DB + τC
DG + τC

DB D-Dark ∼ (θC
DG − θC

DB) + (τC
DB − τC

DG)

Intercept 0.04 0.08 0.78 Intercept 0.03 ∗∗ 0.01 0.78

τC
DB 3.52 ∗∗∗ 0.18 (τC

DB − τC
DG) 3.49 ∗∗∗ 0.17

τC
DG −3.40 ∗∗∗ 0.19 (θC

DG − θC
DB) 0.14 ∗∗∗ 0.02

θC
DG 0.15 ∗∗∗ 0.02

θC
DB −0.14 ∗∗∗ 0.02

Milk SC-
IAT

Full model D-Milk ∼ θC
MG + θC

MB + τC
MG + τC

MB D-Milk ∼ (θC
MG − θC

MB) + (τC
MB − τC

MG)

Intercept −0.38 ∗ 0.15 0.31 Intercept 0.21 ∗∗∗ 0.02 0.25

τC
MB 1.67 ∗∗∗ 0.28 (τC

MB − τC
MG) 1.82 ∗∗∗ 0.29

τC
MG −2.27 ∗∗∗ 0.32 (θC

MG − θC
MB) 0.12 ∗∗∗ 0.03

θC
MB −0.08 ∗ 0.04

θC
MG 0.17 ∗∗∗ 0.04

Note: ∗∗∗ p < .001, ∗∗ p < .01. θ Ability estimates, τ : Speed estimates, DGMB: Dark/Good-Milk/Bad condition (IAT), MGDB: Milk/Good-Dark/Bad con-
dition(IAT), DG: Dark/Good condition (Dark SC-IAT), DB: Dark/Bad condition (Dark SC-IAT), MG: Milk/Good condition (Milk SC-IAT), MB: Milk/Bad
condition (Milk SC-IAT), C: Estimates obtained with the comprehensive models.
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The estimates of the intercepts of the Null models were significantly different from 0. The

estimates of the intercepts of the D-Milk score and that of the D score showed larger effect

sizes than that of the D-Dark score.

Forward selection always pointed the full models as the models best accounting for the

typical scoring. Ability estimates were always retained in the models, although the effect size

of their coefficients was smaller than that of the coefficients of the speed estimates.

The linear combination of the estimates of the single measure models and their differential

measures explained the same amount of variance of both the D score and the D-Dark score.

Differential measures explained a lesser proportion of variance of the D-Milk score than that

explain by the linear combination of their single components. Additionally, the D-Milk score

showed the smallest proportion of explained variance, regardless of the predictors.

Similar results were obtained for the estimates of the Comprehensive model. The propor-

tion of variance of the D-Dark score explained by the estimates of the comprehensive model

was slightly lower that that explained by the estimates of the single measure model. This

result held for both the linear combination of the condition–specific estimates and for their

differential measures. Concerning the D score and the D Milk score, the proportion of ex-

plained variance was almost identical to that explained by the estimates of the Single measure

model.

7.3.4 Prediction of a behavioral outcome

The predictive abilities of the Rasch and log-normal model estimates and of the typical

scoring were investigated and compared. Since condition–specific ability estimates and

condition–specific speed estimates were available for both the single measure models and the

comprehensive models, the predictive ability of the differential measures was investigated as

well.

Results of the stepwise logistic regressions are reported in Table 7.6. Forward selection

retained only the IAT D score, regardless of whether it was paired with the scores of each

SC-IAT or with the D-Sciat. Also when considering the single components of the typical
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Table 7.6
Stepwise forward selection results: Choice prediction.

Model log-odds SE Nagelkerke R2 Gen DCC MCC

Null Intercept −0.08 0.16 0.00 0.48 0.00 1.00

Typical scoring
1 Intercept −1.03 ∗∗∗ 0.31 0.16 0.64 0.62 0.67

D score −1.55 ∗∗∗ 0.39

2 Intercept −0.36 0.91 0.12 0.62 0.67 0.56

MDGMB 0.01∗∗ 0.01

MMGDB −0.01∗ 0.01

Single measure models
3 Intercept −0.97 ∗∗∗ 0.29 0.16 0.64 0.68 0.60

(τMGDB − τDGMB) −3.66 ∗∗∗ 0.93

4 Intercept 0.14 0.73 0.19 0.64 0.66 0.63

τDGMB 2.83 ∗∗ 1.04

τMGDB −5.77 ∗∗∗ 1.66

τDG 4.49 ∗ 2.23

Comprehensive models
5 Intercept −0.95 ∗∗∗ 0.29 0.15 0.64 0.67 0.60

(τC
MGDB − τC

DGMB) −3.57 ∗∗∗ 0.91

6 Intercept 0.44 0.81 0.19 0.64 0.65 0.63

τC
DGMB 2.45 ∗ 1.08

τC
MGDB −5.99 ∗∗∗ 1.76

τC
DG 5.29 ∗ 2.59

Note: ∗∗∗ p < .001, ∗∗ p < .01, ∗ p < .05. θ: Ability estimates, τ : Speed estimates, DGMB:
Dark/Good-Milk/Bad condition (IAT), MGDB: Milk/Good-Dark/Bad condition (IAT), DG:
Dark/Good condition (Dark SC-IAT), DB: Dark/Bad condition (Dark SC-IAT), MG: Milk/-
Good condition (Milk SC-IAT), MB: Milk/Bad condition (Milk SC-IAT), Gen: General ac-
curacy, DCC: Dark chocolate choice accuracy, MCC: Milk chocolate choice accuracy, C:
Estimates obtained with a comprehensive modeling of IAT and SC-IAT responses.
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scoring methods, only the single components of the IAT D score were retained in the model.

This model explained the lowest proportion of variance, and it resulted in the lowest MCC

accuracy.

The speed differential measures of the IAT, both as single measures and as comprehensive

model, were the only predictors retained by forward selection. These models explained a

slightly lower proportion of variance than that explained by the models including the linear

combination of their single components.

For both the single measure models and the comprehensive model, forward selection

retained the speed estimates of the IAT associative conditions (i.e., τDGMB and τMGDB) and

that of the DG associative condition of the Dark SC-IAT (i.e., τDG). These models explained

a higher proportion of variance than that explained by the D score and its linear components.

With the only exception of the model including the single components of the IAT D score,

which showed the lowest accuracy of prediction, all other models showed the same general

accuracy of prediction.

7.4 Final remarks

The approach presented in this study represents a first attempt at a comprehensive modeling

of the IAT and the SC-IAT. The Rasch model and the log-normal model estimates resulting

from the application of the (G)LMMs provided interesting insights on the functioning of these

implicit measures, and on the consequences of not accounting for the non-independence of

the observations.

The stimulus estimates obtained with both the single measure models and the compre-

hensive models allowed for identifying stimuli with estimates far away from the estimates of

the stimuli belonging to the same category. In the single measure models, measure–specific

stimulus estimates allowed for highlighting stimuli with a different functioning in all implicit

measures. However, the pattern of these stimuli was not consistent between implicit mea-

sures. For example, stimulus good was a particularly easy stimulus in the IAT as well as a

demanding one in both SC-IATs. The stimulus estimates obtained with the comprehensive
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models were less extreme than the ones obtained with the single measure models, which

might be artificially inflated by unaccounted and uncontrolled sources of error variance. By

controlling for the sources of error variance between implicit measures, the comprehensive

modeling approach might provide more reliable stimulus estimates, describing the function-

ing of the stimuli across implicit measures.

Having measure–specific stimulus estimates is useful nonetheless, and allows for inves-

tigating the functioning of the stimuli according to the specific measure in which they are

administered. However, the single measure approach risks for resulting in biased stimulus

estimates, that might lead to fallacious inferences on the functioning of the stimuli. Poten-

tially, measure–specific stimulus estimates can be obtained by specifying the random slopes

of the stimuli in each implicit measure. Since also the variability of the respondents is of in-

terest, their random slopes in the associative conditions should be specified as well. Besides

not being identified in a Rasch modeling framework (i.e., either respondents or stimuli have

to be centered at 0), a model of this complexity would need an extremely high within–stimuli

between–measures variability to converge.

Regardless of whether they were obtained with the single measure models or the com-

prehensive model, the ability estimates provided a lower contribution to the prediction of the

typical scoring methods than the speed estimates. Considering that the typical scoring meth-

ods are mostly based on time responses, this result is not surprising. Nonetheless, since each

incorrect response is replaced with an inflated response time, also the accuracy performance

of the respondents plays a role in the final score.

The IAT D score was the typical score with the best predictive ability of the behavioral

outcome. When the linear components of the typical scoring procedures were used to predict

the choice, only the average response times of the two associative conditions of the IAT were

retained in the model. This model resulted to be the one with the lowest predictive ability in

respect to the milk chocolate choice. Based on the results obtained with the typical scoring

procedures, it appears that only the IAT provides the information needed for predicting the

choice.

The results obtained with the estimates of the single measure models and the comprehen-
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sive model estimates move in another direction. Regarding differential measures, forward

selection retained only the speed differential measure of the IAT. However, when the linear

combination of their single components was used to predict the choice, the contribution of

the speed in the Dark-Good condition of the Dark SC-IAT was highlighted. Consequently,

it can be speculated that the behavioral choice is driven more by the liking for dark choco-

late than by the dislike for milk chocolate. By only considering the typical scoring methods,

affected by different sources of error variance, or the differential measures, confounding the

contribution of their components (Fiedler et al., 2006), it was not possible to disentagle the

automatic associations mostly involved in the prediction of the behavior.

Although the prediction provided by the single measure model estimates and that pro-

vided by the comprehensive model estimates do not result in higher accuracy of the choice,

they do explain an higher proportion of the variance of the choice. Most importantly, they

allow for a deeper understanding of the processes underlying the actual behavior.

In this study, implicit measures were used for the assessment of a quite trivial preference,

namely the chocolate preference. It would be interesting to investigate whether this approach

would replicate on implicit measures for the assessment of other preferences, like the prefer-

ence for different sodas in Karpinski and Steinman (2006), but, most importantly, of socially

relevant constructs, such as implicit prejudice. Given that the model estimates provide a

deeper and more thorough understating of the processes underlying people’s behaviors, this

modeling framework might be used for shedding a new light on inter-group behaviors such

as the decision to affiliate with people belonging to socially stigmatized out-groups.



Chapter 8

Conclusions

This thesis was aimed at finding new methods for a rigorous approach to the analysis of

implicit measure data by following three paths. The sound path was aimed at finding mea-

surement models for the analysis of the IAT and the SC-IAT, both when they are administered

as stand-alone measures and when they are administered together. The fair path was aimed at

introducing new algorithms to align the differences in the scoring procedures of the IAT and

the SC-IAT, hence allowing for a fairer comparison between the predictive performance of the

two implicit measures. Finally, the easy path aimed at improving the replicability of implicit

measure results by providing new open source tools for scoring the IAT and the SC-IAT.

In this chapter, the main findings, implications, and limitations of the sound and fair paths

are discussed. A comment on the overall ability of the thesis to meet the final aim closes the

argumentation.

8.1 The sound path

The first step of the sound path was to find an appropriate modeling framework for the anal-

ysis of the IAT data. Since the measure obtained from the IAT strongly depends on the

functioning of the stimuli (e.g., Bluemke & Friese, 2006), a modeling approach resulting in

stimulus–specific information appeared to be the most appropriate one for gaining a better

understanding of the IAT measure. Specifically, we were looking for a model able to disen-

tangle the contribution of the person characteristics from that of the task in determining the

observed responses. The modeling frameworks proposed so far for the analysis of the IAT

data highlighted how the performance at the IAT cannot be considered as the sole expression
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of implicit processes and that the contribution of controlled processes has to be accounted for

to draw meaningful conclusions from IAT data. Moreover, they all stress the inappropriate-

ness of the D score as a measure of the automatic associations assessed by the IAT. Some of

these models provide information at the stimulus categories level, or parameters expressing

a mixture of the respondent and task characteristics, in sharp contrast with the peculiarities

we were looking for. Despite these frameworks provide extremely useful information on the

cognitive processes underlying the person performance, the lack of detailed information at

the task or individual stimulus level is noteworthy.

Given that the aim was to disentangle the respondent component from that of the task and

to gain information at the stimulus and respondent levels, a Rasch framework represented the

best modeling approach. Evidence from previous study already showed the effectiveness of

the application of the Many Facet Rasch Model (MFRM) to the IAT data for providing fine-

grained information at the individual stimulus level. However, also this solution presented

some drawbacks that could not be ignored. Firstly, the MFRM was applied to the discretized

response times of the IAT. The discretization of a continuous variable results in a potentially

large loss of information, and the number of quantiles into which the continuous variable is

discretized might influence the results. Secondly, the fully-crossed structure of the IAT and

its related sources of variability and dependencies were overlooked. The MFRM can address

other sources of variability than just the ones due to respondent ability and stimulus difficulty,

such as the variability due to the associative conditions of the IAT. However, there are reasons

to believe that the sources of variability and dependencies in the IAT case can go beyond the

respondents, the stimuli, and the associative conditions.

Despite its shortcomings, a Rasch approach to the IAT data represented the choice most

harmonious with the aim of the sound path. However, some pieces of the puzzle were still

missing. The issue of the sources of variability in the IAT data had to be addressed and the

need for a methodology able to do so was urgent. Moreover, since the IAT is based on both

the speed and accuracy with which the stimuli are sorted in their reference categories, a mod-

eling framework able to account for both types of responses, even in separate models, would

allow for potentially gathering all the information from the IAT data. Finally, a modeling
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framework flexible enough to include other implicit measures administered together with the

IAT, or as stand-alone measures, would represent a step forward in the modeling of implicit

measures. Summarizing, we were looking for a modeling framework able to provide a Rasch

parametrization of both accuracy and time responses considered in their continuous nature,

to account for the sources of variability at the level of the single observations, and to be ex-

tended for modeling multiple implicit measures at the same time. A Linear Mixed-Effects

Model (LMM) approach meets all these requirements. The ability of LMMs to address the

sources of dependencies in the data and their flexibility for being extended to model multiple

measures are their most outstanding and obvious features. A less obvious and less straightfor-

ward feature of LMMs is their link with the Rasch model and, specifically, their application

for estimating the parameters of this psychometric model. However, it must be considered

that the Rasch model is a generalized linear model (GLM) for latent trait variables. The

link between Generalized LMMs (GLMMs) and the Rasch model becomes evident when

the equation of the Rasch model and that of the inverse link function of a GLM for bino-

mial responses (logit−1) are compared. The only difference concerns the interpretation of

the parameters, hence the relationship linking the respondents with the stimuli. While in the

typical formulation of the Rasch model the respondent and stimulus characteristics move in

opposite directions (i.e., the stimulus works as a sort of impediment for the response), in the

application of the GLM they move in the same direction (i.e., the stimulus works as a sort of

facilitator for the response). In the former case, the functioning of the stimulus is interpreted

in terms of its difficulty, in the latter one in terms of its easiness. By including the matrix that

defines the random effects into the linear component of the model, the structure of the GLM

can be extended to a GLMM, allowing for the estimation of the Rasch model parameters

while addressing the fully-crossed structure of the IAT and its related sources of dependency.

Nonetheless, by applying GLMMs to accuracy responses, only a Rasch parametrization of

the accuracy responses is obtained. Considering the normal density distribution of the log-

transformed time responses allows for avoiding the discretization needed for the application

of the MFRM and results in the estimation of the log-normal model (van der Linden, 2006),

which yields a parametrization of the response times similar to that provided by the Rasch
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model. According to the log-normal model, the observed log-time responses can be explained

by considering a respondent characteristic (i.e., speed parameter) and a stimulus character-

istic (i.e., time intensity parameter). These estimates can be obtained by applying LMMs to

the log-time responses of the IAT.

The parameters of the Rasch and log-normal models are obtained from the random struc-

tures defined in each (G)LMMs. According to the random factor on which the multidimen-

sionality is allowed (either the respondents or the stimuli), different Rasch parametrizations

of the data are obtained. Models with different random structures have been specified for

the analysis of the accuracy and log-time responses of the IAT. Their feasibility and useful-

ness, and the comparison with typical IAT scoring methods were investigated in two studies

employing two different IATs (see Chapter 5). In a first study, a Race IAT was used. Regard-

ing accuracy responses, the best fitting model was the one where the multidimensionality

was allowed at the stimulus level. This implies that the within–stimulus between–conditions

variability was higher than the within–respondents between–conditions one. As such, the

IAT effect on the accuracy responses was mostly due to the change in the functioning of

the stimuli between conditions (i.e., the functioning of the stimuli changed according to the

stimulus category with which they shared the response key). The random structure of this

model provides condition–specific stimulus estimates and overall across–conditions respon-

dent estimates of the Rasch model. The condition–specific stimulus estimates allow for in-

vestigating the contribution of each stimulus to the IAT effect. All stimuli tended to be easier

in the White-Good/Black-Bad condition than in the opposite one. Good and Bad evalua-

tive attributes showed the highest difference between the two conditions, while the stimuli

representing Black people faces gave the least contribution to the IAT effect. The low dif-

ference between the condition–specific easiness estimates of the Black stimuli indicates that

the easiness of categorization of these stimuli did not change much depending on the eval-

uative dimension with which they shared the response key. Thus, it can be speculated that

Black people were neither strongly associated with negative attributes nor with positive ones,

and that the resulting IAT effect was mostly driven by the evaluations made on White people

faces. Drawing on these results, the IAT effect appeared to be mostly driven by the evalua-
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tive dimensions, specifically by the positive one. These results are in line with those found

with previous applications of the MFRM to the IAT data, according to which the IAT effect

should be interpreted as the expression of ingroup preference rather than outgroup derogation

(positive primacy effect; e.g., Anselmi et al., 2013).

The best fitting model for the log-time responses allowed for the multidimensionality at

the level of the respondents. Thus, the IAT effect on the log-time responses was mostly due

to a change in the speed of the respondents between conditions, while the time each stimulus

required for getting a response did not change according to the stimulus category with which

it shared the response key. This model resulted in the estimation of condition–specific re-

spondents speed parameters and overall stimulus time intensity estimates, indicating a higher

within–respondents between–conditions variability than within–stimuli between–conditions

one. The overall time intensity estimates can inform about the within–categories variability,

and hence about the heterogeneity of the stimuli. Specifically, the stimuli displaying a time

intensity estimate too far away from the time intensity estimates of the other stimuli belonging

to the same category should be replaced to reduce both the within–categories variability and

the between–stimuli variability. The condition–specific respondent speed estimates allowed

for delving deeper on the association(s) driving the IAT effect. Additionally, they provided a

differential measure similar to the D score expressing the bias on the speed performance due

to the effect of the associative conditions. This differential measure can be used for further

analysis, such as the prediction of behavioral outcomes.

The first study brought evidence in favor of the usefulness and feasibility of the proposed

modeling framework for the analysis of the IAT data. However, neither the usefulness of the

information at the stimulus level nor that at the respondent level were tested. If the stimulus

estimates provided by these models inform about the stimuli giving the highest contribution to

the IAT effect, it should be possible to isolate and select them for obtaining better performing

IATs. The selection of the stimuli giving the highest contribution to the IAT effect would re-

duce the stimuli heterogeneity and the across-trial variability, hence allowing for obtaining a

more reliable measure of the construct under investigation as expressed by the D score. More-

over, since the Rasch and log-normal model estimates address the source of dependencies in
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the IAT data, they should provide a better measure of the construct under investigation and a

better prediction of a behavioral outcome than the D score. The second study directly tested

these speculations via an IAT for the assessment of the implicit preference for dark or milk

chocolate (Chocolate IAT). By using dark and milk chocolate as target objects of the IAT, it

was possible to reward the participation of the respondents with a free bar of dark or milk

chocolate. The free bar of chocolate was not just a reward for the respondents but also the

behavioral task of the experiment. The choice was registered by the experimenter, and it was

used for investigating the predictive abilities of the model estimates and the D score. Both the

accuracy and the log-time models were replicated on this data set. Thus, condition–specific

easiness estimates and overall ability estimates of the Rasch model, and condition–specific

speed estimates and overall time intensity estimates of the log-normal model were obtained.

The condition–specific stimulus easiness estimates suggested that the IAT effect was mostly

driven by a positive evaluation of milk chocolate than a negative evaluation of dark choco-

late. Moreover, they allowed for pinpointing the most and least informative stimuli for each

category. This information was used for creating smaller data sets containing only either

the most informative or least informative stimuli, and new D scores on the smaller data sets

were computed. The speed estimates of the log-normal model outperformed the D score in

the prediction of the behavioral outcome. The D score resulted in a lower predictive ability

also in comparison to the linear combination of its single components. Interestingly, also the

differential measure obtained from the condition–specific speed estimates provided a lower

predictive ability than the linear combination of the condition–specific speed estimates.

By selecting only the stimuli providing the highest contribution to the IAT effect or the

ones providing the least contribution to the IAT effect, the number of trials was reduced to

1/3 of the original starting pool of trials. The D score computed on the high informative

stimuli data set showed a slightly better performance than the D score computed on the low

informative stimuli, and both of them resulted in a better predictive ability than the D score

computed on the entire data set. This result brings further evidence on the sensitivity of the D

score to the across-trial variability due to the heterogeneity of the stimuli, at the point that it

does not even matter whether the highest informative stimuli or the lowest informative ones
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are selected as long as the variability is reduced.

The results of the first two studies proved the usefulness of using a LMMs approach to

obtain a Rasch parametrization of the accuracy and time responses of the IAT while address-

ing the fully-crossed structure of the data. These models were further extended for modeling

the data of the SC-IAT and those obtained with the concurrent administration of the IAT and

the SC-IAT by following both a single measure and a comprehensive modeling approach. To

pursue this aim, a Chocolate IAT, a dark chocolate SC-IAT and a milk chocolate IAT were

used. The single measure modeling approach resulted in condition–specific respondent es-

timates and overall stimulus estimates for all implicit measures, concerning both the Rasch

and log-normal models. As such, the (G)LMMs approach showed its feasibility and appro-

priateness also for the analysis of the SC-IAT data within a Rasch framework. However,

since the implicit measures were modeled separately, the estimates of both the respondents

and the stimuli could not be directly compared between measures. Moreover, since all the

implicit measures were administered concurrently and their data were analyzed separately,

the between–measures variability and related sources of dependencies were left free to bias

the estimates of the parameters. The comprehensive modeling approach was introduced with

the specific aim of addressing these issues, although the single measure modeling approach

represents a valid approach for obtaining a Rasch parametrization of the accuracy and time

responses of the SC-IAT administered as a stand-alone measure.

The comprehensive modeling approach resulted in condition–specific respondent esti-

mates and overall stimulus estimates (across implicit measures) of the Rasch and log-normal

models. In this case, it was possible to directly compare the estimates of the respondents

between implicit measures, hence obtaining detailed information on the changes in the per-

formance of the respondents. For instance, both the ability and the speed of the respondents

showed a higher variability between the associative conditions of the IAT than in both the SC-

IATs. The condition–specific ability estimates combined with the condition–specific speed

estimates indicated an IAT effect on both their accuracy and time performance. The effect of

the associative conditions on the accuracy and speed performance of the respondents was also

captured by the typical scoring of each measure, as indicated by the contributions given by
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both the ability and speed estimates in predicting these scores. Indeed, typical scoring of the

IAT and the SC-IAT are based on both time and accuracy responses (i.e., incorrect responses

are replaced with the average response time added with a penalty). The higher the number

of incorrect responses, the higher the number of trials whose response time is replaced with

the inflated one and, consequently, the higher the average response time. Consequently, if

both the speed performance and the accuracy performance are impaired in one condition, the

average response time is increased by the combined effect of slow response times and inflated

incorrect responses. This results in a higher difference between the associative conditions and

in a larger effect size. Nonetheless, the ability estimates gave a smaller contribution to the

prediction of the typical scoring than the speed estimates. The difference in the performance

of the respondents between the associative conditions might be ascribable to just a small set

of stimuli. As such, the difference is not entirely related to the automatic evaluative associa-

tions but also to the peculiarities of the task. If a stimulus is correctly responded but requires

a large amount of time for the response, it influences the average response time. If a stimulus

is incorrectly responded, its response time is replaced by the average response time in that

condition added with a penalty. Either way, the effect size of the D score will be artificially

inflated by the response time of just some of the stimuli, and the inferences based on that

should be taken with caution. As such, understanding how and why the estimates of some

stimuli are far away from those of the stimuli belonging to the same category becomes of

particular relevance for getting a better understanding of the measure obtained.

The risks related to the use of the typical scoring methods for expressing the constructs

assessed by implicit measures were further highlighted by the results on the prediction of

the behavioral outcome (i.e., the choice between a milk or dark chocolate bar). According

to typical scores, the measure provided by both the SC-IATs was not relevant for predicting

the choice, and only the IAT appeared to provide a useful contribution. If one was called

to draw conclusions on the contribution of the SC-IATs to the prediction of the behavioral

outcomes, he/she would have probably inferred that the SC-IATs do not give any contribution

to the choice prediction. Consequently, only the measure obtained from the IAT would have

been considered as relevant for predicting the behaviors. To be fair, the differential measures
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obtained from the estimates of the model parameters pointed at the same result. Only the

differential measure obtained from the IAT condition–specific speed estimates have been

found to predict the choice, while the differential measures obtained from the condition–

specific speed estimates of the SC-IATs did not contribute to the prediction. However, when

the linear combination of the condition–specific speed estimates of each implicit measure

was used for predicting the choice, the speed in the Dark-Good condition of the Dark SC-

IAT entered and remained in the model. As such, it can be speculated that it is more the like

for dark chocolate than the dislike for milk chocolate that drives the behavioral choice.

The results on the choice prediction from the studies in both Chapters 5 and 7 highlighted

another issue related to the use of differential measures. In both cases, regardless of the

implicit measure under consideration or the modeling framework used, differential measures

were less accurate in predicting the behavioral outcome than the linear combination of their

respective single components. The differences between the predictive abilities of the typical

scores of implicit measures and the linear combination of their single components are less

evident than the differences between the predictive abilities of the model estimates and their

differential measures. In the former case, the prediction is already affected by other sources

of error variance and worsened by the confounding effect of the differential measure. In

the latter one, the prediction is only impaired by the confounding effect of the differential

measure. In Chapter 5, the model including the linear combination of the condition–specific

speed estimates resulted in the highest accuracy of prediction of the milk chocolate choice,

which was disregarded by the D score, its linear components, and the speed-differential.

In Chapter 7, the model including the linear combination of the condition–specific speed

estimates of each implicit measure was the only one able to highlight the contribution of the

speed of the Dark-Good condition of the Dark SC-IAT. This model did not result in a higher

predictive accuracy than the others, but it did explain a higher proportion of variance of the

choice. Besides, it made possible to gain a better understanding of the processes underlying

the choice. In the former case, differential measures did not provide a good prediction of one

of the possible outcomes. In the latter one, differential measures were not able to identify the

contribution of the SC-IAT in predicting the choice. The speed in only one of the conditions
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of the SC-IAT was found to contribute to the choice prediction, and the differential measure

computed between the condition–specific speed of the Dark SC-IAT might have confounded

their importance and relevance for the choice prediction, pointing at a null contribution of the

Dark SC-IAT. Remarkably, the contribution of the Dark SC-IAT was completely lost when

the single components of the typical scoring were used, further suggesting that they include

error variance components impairing the predictive ability of the measure.

The lack of predictive ability of differential measures might be due to their differential

nature. The computation of differential measures results in reliable scores only when the

two quantities used for the computation have the same weight in the final score, and this can

be true only if a series of assumption is met (Fiedler et al., 2006). Firstly, the two target

categories are assumed to give the same exact contribution to the IAT effect, implying that

the like for one of the target categories is as strong as the dislike for the opposite category.

Consequently, the zero point can be interpreted as the absence of any positive or negative

attitudes toward both target objects. Secondly, also the evaluative dimensions and the target

objects are assumed to have the same impact on the IAT effect. This assumption is in line with

the idea of treating the stimuli as a fixed factor, hence assuming that they all have the same

impact on the observed scores. Finally, systematic and unsystematic sources of variability are

assumed to affect the performance of the respondents across the two conditions in the same

way.

The information on the performance of respondents and the functioning of the stimuli

provided by the modeling framework proposed in this thesis can be used for verifying the

assumptions required for the computation of reliable and meaningful differential measures.

The results on the functioning of the stimuli suggest that each stimulus gives a different

contribution to the IAT effect, and that their variability differently affect the final score. For

instance, all studies highlighted a higher time intensity estimate for the attribute stimuli than

for the image stimuli. Additionally, in some cases image stimuli tended to be easier than

attribute stimuli. These results point at a different processing of the stimuli according to their

type (attributes or images), and blatantly they cannot have the same effect on the observed

responses.
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Moreover, both the contribution of the stimuli to the IAT effect and the relationship be-

tween the condition–specific speed estimates and the D score suggest that the differential

score is mostly driven by the performance in one of the two associative conditions. Conse-

quently, it seems bold to assume that the like for one of the target categories is as strong as

the dislike for the other one. Moreover, since the IAT rests its measure on the juxtaposition

between two objects, there might be cases in which the preference (dislike) for one object

is extremely strong, while the contrasting object is not related to any particular positive or

negative evaluation. Therefore, it can be assumed neither that attitudes towards the two con-

trasting objects have the same weight in the final score, nor that stimuli are processed in the

same way and have the same impact on the final differential measure. The assumption on the

sources of systematic variabilities affecting the two conditions in the same way is the one with

the highest probability of being violated. Firstly, the sources of variabilities and dependecies

related to the fully-crossed structure of the IAT highly unlikely affect the performance of the

respondents in the same exact way during the administration of the measure. Additionally, as

also highlighted by the ReAL model, different controlled processes intervene during the per-

formance at the IAT according to the specific associative condition. Finally, the results on the

ability and speed performance of the respondents obtained from the Rasch and log-normal

modeling of the implicit measures point at a different variability in the performance of the

respondents between the conditions. As a consequence of the violation of these assumptions,

differential measures might not represent the best choice for expressing the psychological

construct assessed by implicit measures.

The single measure and comprehensive modeling of implicit measures produced almost

identical results concerning the relationship between model estimates and typical scoring

methods and their predictive abilities of the behavioral outcome. As such, one might be

wondering about the advantages of using the comprehensive modeling over the single mea-

sure one. The latter one results in measure–specific stimulus estimates informing about the

functioning of the stimuli in each implicit measure. Conversely, the comprehensive model

results in overall stimulus estimates across the implicit measures informing about the overall

functioning of the stimuli across measures. However, the apparent advantage of providing
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measure–specific stimulus estimates provided by the single measure modeling is also its ma-

jor shortcoming, as already discussed. By not addressing the between–measures variability,

the new sources of error variance related to the administration of multiple implicit measures

to the same respondents are unaccounted, and they might bias the estimates of the model pa-

rameters. Moreover, since the estimates are obtained from separate and independent models,

they cannot be compared between each other, regarding both the stimuli and the respondents.

The direct comparison between the functioning of the stimuli in each implicit measure is not

possible, and might lead to incorrect conclusions regarding their contribution to the overall

effect or their representativeness of the category to which they belong. Additionally, also the

comparison between the performance of the respondents in each implicit measure is mean-

ingless if not dangerous in terms of inferences that can be made.

8.2 The fair path

The fair path appears to be in clear antithesis with what has been said so far about typical

scoring of implicit measures. However, effect size indexes are still the most common ways

for scoring implicit measure data, both when administered as stand-alone measures and when

administered together. The resulting scores are then used for further analyses and/or for com-

paring the performance of the implicit measures in respect to some criteria (e.g., prediction

of behavioral outcomes). However, the differences in both the administration and scoring

procedures of implicit measures such as the IAT and the SC-IAT might directly affect the

scores obtained from each of them. If these scores are then used for comparing the IAT

and SC-IAT performances on different criteria, the comparison might result affected by ar-

tifacts which are not directly related to the goodness of the implicit measures but to factors

of minor importance. How one can be sure that the lesser predictive ability of a behavioral

outcome provided by the SC-IAT is truly ascribable to the measure itself and not to some

minor features? By providing easy-to-compute and easy-to-interpret effect size measures

with which typical users of these implicit measures are more familiar, the approach presented

in the fair path might help in answering this question or, at the very least, in fostering a
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fairer comparison between the IAT and the SC-IAT. Summarizing, the fair path was aimed at

providing rigorous and comparable scoring methods for different implicit measures without

moving apart from the typical approach. The fairer comparison resulting from the alignment

of the procedural and scoring differences leads to mainly two advantages. Firstly, the perfor-

mance of the respondents on different measures can be reasonably compared, and secondly

the results of the comparison between the performance of implicit measures with respect to

different criteria can be mostly ascribed to the implicit measure and not to other artifacts.

The new scoring methods that have been implemented do not necessarily result in a higher

accuracy of the prediction, but they point at a higher predictive ability of the IAT than the SC-

IAT. In this case, the better performance of the IAT can be more easily pinned to the measure

itself and not to artifacts due to the differences in the scoring and administration procedures.

Moreover, by taking out the role of the scoring in potentially influencing the results, it is

possible to make more accurate speculations on the reasons why the IAT shows a better

performance than the SC-IAT. In the study reported in Chapter 2, the higher predictive of the

IAT might be due to the dichotomous nature of the choice, which is more in line with the

comparative measure provided by the IAT than the absolute one provided by the SC-IAT.

8.3 Limitations and future directions

The modeling framework introduced in this thesis provides interesting and useful information

on the functioning of different implicit measures, concerning both the respondents and the

stimuli. For instance, it made possible to pinpoint the stimuli that gave the highest contribu-

tion to the IAT effect. This information can be further used for getting a better understanding

of the automatic association(s) implicated in the performance at the IAT. Moreover, the infor-

mation at the stimulus level helps in reducing the across-trial variability, allowing for both the

selection of only the most informative stimuli and the design of briefer but highly informative

IATs. At the respondent level, it was possible to shed a new light on the components included

into the D score, and to obtain better inference on the implicit constructs under investigation.

However, the information yielded from the accuracy responses completely ignores the in-
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formation yielded from the log-time responses, and vice-versa. As such, important relation-

ship between the responses might be lost. For instance, it is not possible to know whether an

extremely easy stimulus (i.e., a stimulus that obtains a high proportion of correct responses)

is as such because respondents tend to spend a high amount of time on it before giving a

response or whether it also obtains fast responses. In the latter case, the stimulus can be con-

sidered as a good one from both an accuracy and time perspectives. Similarly, if a stimulus

has a low time intensity estimate (i.e., it obtains fast responses) combined with a low easiness

estimate (i.e., it obtains a high proportion of incorrect responses), it should not be considered

as a good stimulus.

The separate modeling of accuracy and time responses assumes that the distributions

of these variables are determined by different parameters, which are in turn generated by

different processes (van der Linden, 2006). The accuracy and speed performance of one re-

spondent is constrained by a speed-accuracy trade-off. Once the speed-accuracy trade-off is

set, the response time distribution of the respondent is solely determined by his/her speed.

Similarly, the distribution of the accuracy responses only depends on the respondent abil-

ity. However, when a population of respondents is considered, it is not possible to assume a

single speed-accuracy trade-off, and a dependency between the accuracy and time responses

should be expected (van der Linden, 2006, 2007). The relationship between the parame-

ters governing the accuracy and speed performances can be understood at a second level of

modeling, as illustrated in the hierarchical model by van der Linden (2007). As the name

suggests, the hierarchical model posits two levels of modeling. At a first level, the accu-

racy and log-time responses are modeled separately. An IRT model is used for modeling

the accuracy responses, while the log-normal model is used for modeling the log-time re-

sponses. Each model yields stimulus and respondent parameters explaining the accuracy and

log-time responses. At a second level, two models are assumed to explain the relations be-

tween the respondent parameters (i.e., population model) and the stimulus parameters (i.e.,

item-domain model). The population model assumes a multivariate normal distribution to

describe the population from which the respondents are drawn. The multivariate distribution

is defined by the respondent parameters obtained from the accuracy and log-time models.
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The item-domain model describes the domain (population) of items from which the items are

drawn. A multivariate normal distribution defined by the stimulus parameters obtained from

the accuracy and log-time models is assumed for this model as well.

Undoubtedly, the second level of modeling introduced by van der Linden (2007) would

provide further insights on the functioning of implicit measures concerning both the stimuli

and the respondents. Nonetheless, Rome wasn’t built in a day. As van der Linden (2006)

himself did, the first step for a hierarchical approach is to find the appropriate models for

the first level of modeling. Despite neither the Rasch model nor the log-normal model are

breaking news in Psychometrics, their applications to implicit measure data with the Lin-

ear Mixed-Effects Model approach followed in this thesis are rather new. As such, we first

wanted to find an appropriate and reliable approach to the separate modeling of accuracy and

time responses of implicit measures.

This thesis was mainly focused on the modeling of the IAT-family implicit measures,

namely the IAT and the SC-IAT. Both the IAT and the SC-IAT are based on the logic of

response compatibility for a correct and fast categorization of the stimuli with two response

keys. Other implicit measures, such as the Go/No-go Association Task (GNAT; Nosek &

Banaji, 2001), exploit the same logic of response compatibility in favor of the inhibition of

the responses in contrasting conditions. As such, only one response key is needed. In the

GNAT, only two categories at the time are presented, such as Coke and Good. Along with

the stimuli belonging to these target categories, stimuli representing either other beverages or

negative attributes are presented. The task is to identify the stimuli belonging to the displayed

target categories by pressing the response key and to do nothing (i.e., inhibit the response)

when the distractors appear on the screen. The same task has to be performed in a contrasting

condition where Coke exemplars and Bad attributes are the reference categories displayed on

the screen. The underlying idea is that it would be easier to press the response key when

the reference categories are strongly associated between each other than when they are not.

The structure and the type of task characterizing the GNAT make it not possible to obtain

a response time of the correct response when a distractor is presented (i.e., the inhibition

of the response). Consequently, the scoring of the GNAT is entirely based on the accuracy
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responses. Given that the accuracy and log-time models presented in this thesis do not rely on

each other to be applied, the models based on accuracy responses can be used for modeling

the accuracy responses of the GNAT to obtain a Rasch parametrization of the data. If the

GNAT is administered with other implicit measures, the accuracy responses of both measures

can be modeled together with a comprehensive modeling, such as that illustrated for the joint

modeling of the IAT and the SC-IAT. While in the case of the conjoint modeling of the IAT

and the SC-IAT, both the accuracy and time responses of the two measures can be modeled

together, in the case of the GNAT administered with another measure, only the accuracy

responses of the two measures can be included in the comprehensive model to obtain a Rasch

parametrization of the data.

So far, the modeling framework introduced in this work has been applied with the main

purpose of validating it. However, a more practical application is missing. For instance, this

approach might be used for assessing the effect of the features of the IAT administration pro-

cedure on the performance of the respondents. While it is known that some of the features

of the IAT administration, such as the order of presentation of the associative blocks, influ-

ence the performance of the respondents (e.g., Greenwald et al., 2003), the effect of other

features, such as the presentation of a feedback, are less investigated. The LMMs approach

of this thesis might be particularly useful to pursue this aim for at least two reasons. First,

it would allow to address the issue with a latent traits modeling framework. Second, if the

investigation of the effect of the administration features is carried out in a within-subjects

experimental design, this approach allows for accounting for the dependencies of the obser-

vations. As such, it provides more reliable estimates, which in turn lead to more valid and

generalizable inferences.

8.4 In the end

Despite the limitations, the results across the studies reported in this thesis highlighted the

main aspects that have to be taken into account when analyzing IAT and SC-IAT data.

Firstly, the consequences of not considering the fully-crossed structure of implicit mea-
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sures and its related sources of variability and dependencies have been highlighted in terms

of less reliable measures of the constructs under investigation and of a lower predictive abil-

ity of behavioral outcomes. Specifically, the sensitivity of the typical scoring methods to the

across-trial variability was blatant in the second empirical application of Chapter 5, where

the predictive ability of the D score was improved just by reducing the across-trial variability

with the selection of some of the stimuli. One would have expected that the performance

of the D score computed on the least informative stimuli would have led to a worse predic-

tion than both the one computed on the entire data set and that computed on the reduced

data set containing only highly informative stimuli. Conversely, the reduction of the across-

trial variability was the feature that mostly impaired the reliability of the D score. Even the

D score computed on the least informative stimuli showed a better predictive performance

than the one computed on the entire data set (i.e., the one mostly affected by the across-trial

variability).

Another feature of interest is related to the use of differential measures. Across studies,

differential measures showed their inadequacy for expressing the implicit construct under

investigation. Differential measures resulted in a lower predictive ability than that provided

by the linear combination of their single components.

Regardless of the methodology used for analyzing implicit measure data, the predictive

ability of implicit measures was always outperformed by that of explicit measures. This result

might be due to the fact that the behavioral task was presented right after the questions on the

explicit chocolate evaluation. Consequently, the preferred chocolate might have been made

salient by the explicit questions, and the choice might have been made accordingly. Another

explanation can be given by considering the nature of the assessment provided by implicit

measures. Indeed, implicit measures are supposed to measure the tendency to associate target

objects, like the two types of chocolate, with positive and negative attributes. Clearly, a

measure like that reflects the like/dislike towards the specific target object. It is not a measure

of how much one (or both) the target objects are wanted. According to Meissner et al. (2019),

this is the feature of implicit measures leading to their low predictive ability of behavioral

outcomes. Indeed, the choice might be more driven by a wanting component (i.e., how much
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an object is desired) rather than a liking component (i.e., how much an object is positively or

negatively evaluated), which is the measure obtained from implicit measures. Nonetheless,

the explicit assessment on the chocolate preference asked specifically how much respondent

liked dark and milk chocolate. Consequently, also explicit measures aimed at the liking

component and not at the wanting one.



Appendix A

R code for estimating the Rasch and log-normal

model parameters from IAT and SC-IAT data.

This appendix presents the R code used for obtaining the Rasch and log-normal model

estimates from (Generalized) Linear Mixed-Effect models, respectively.

The example is based on the Coke-Pepsi IAT example of Chapter 1. The estimation of the

Rasch and log-normal model parameters from the SC-IAT data follows the same procedure.

Consequently, the illustration is solely based on IAT data, but it can easily be implemented

on SC-IAT data without any further changes besides the name of the data set.

This code can be copied and pasted in an R script, and it can be executed without changes

as long as the data set on which the models are applied has the following characteristics:

• subject: Column containing the respondent IDs (can be numeric, a factor, or a

string, as long as it is unique for each respondent).

• condition: Column containing the labels for the two associative conditions of the

IAT (SC-IAT) (factor with two levels such as mappingA and mappingB).

• stimuli: Column containing the labels identifying each stimulus (e.g., good, bad,

coke1, pepsi1).

• latency: Column containing the latency of the IAT (SC-IAT) responses. Latency can

be expressed in seconds or milliseconds. In case the IAT (SC-IAT) included a built-in

correction for the incorrect responses, the raw response times should be used instead

of the inflated ones.
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• correct: Column containing the accuracy of the IAT (SC-IAT) responses, where 0

is the incorrect response and 1 is the correct response.

The data set must be in a long format. This means that the response of each respondent on

each stimulus in each associative condition must be on a separate row, and the total number

of observations (rows) for each subject must correspond to the total number of trials in the

two associative conditions. For instance, in the IATs reported in Chapter 5, respondents

were presented with 60 trials in each associative condition, so that we had 120 trials for each

respondent, and consequently 120 rows for each respondent. In both the SC-IATs reported

in Chapter 7, respondents were presented with 72 trials in each associative condition, hence

144 observations (rows) for each respondent (in each SC-IAT) were obtained.

The fixed intercept is set at 0 for the accuracy and log-time models. As such, the estimates

of the fixed slope of the IAT associative conditions can be interpreted as the expected log-odds

of the probability of a correct response in each condition or the expected average log-response

time in each condition, respectively.

In Model 2 (Table 5.1 of Chapter 5) the estimates of the stimuli are centered at 0 (argument

(1|stimuli)), while in Model 3 (Table 5.1 of Chapter 5) respondent estimates are centered

at 0 (argument (1|subject)), for both the accuracy and log-time models. In Model 1, the

Null model, both the stimuli and the respondents are centered at 0.

The Rasch and log-normal models estimates were obtained with the lme4 package (Bates,

Mächler, et al., 2015) in R. The lme4 package can be installed and loaded with the following

code:

install.packages("lme4") # install package

library(lme4) # upload the package for the estimation of

# the models

A.1 Accuracy models specification

The code for the specification of the accuracy models is illustrated.
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A.1.1 Model estimation

Model 1: The between–subjects variability is specified as the random intercepts of the re-

spondents across the associative conditions ((1|subject)), and the between–stimuli vari-

ability is specified as the random intercepts of the stimuli across the associative conditions

((1|stimuli)):

a1 <- glmer(correct ˜ 0 + condition + (1|stimuli) + (1|subject),

data = data, # IAT (SC-IAT) data in long format

family = "binomial")

summary(a1) # summary of the results

Model 2: The between–subjects variability is specified as the random intercepts of the re-

spondents across the associative conditions ((1|subject)), and the within–stimuli between–

conditions variability is specified as the random slopes of the stimuli in the associative con-

ditions ((0 + condition|stimuli)):

a2 <- glmer(correct ˜ 0 + condition + (1|subject) +

(0 + condition|stimuli),

data = data,

family = "binomial")

summary(a2) # summary of the results

Model 3: The between–stimuli variability is specified as the random intercepts of the stim-

uli across the associative conditions ((1|stimuli)), and the within–subjects between-

conditions variability is specified as the random slopes of the respondents in the associative

conditions ((0 + condition|subject)).

a3 <- glmer(correct ˜ 0 + condition + (1|stimuli) +

(0 + condition|subject),

data = data,

family = "binomial")
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summary(a3)

Model comparison

Once the three models have been estimated, they can be compared with each other:

anova(a1, a2, a3)

Since Model a2 and Model a3 have the same degrees of freedom, the χ2 statistics obtained

from their comparison is meaningless and cannot be used for choosing the best fitting model.

Comparative fit indexes should be used instead. The use of the function anova() is just for

the convenience of having comparative fit indexes, deviance, log-likelihood and degrees of

freedom of all models displayed together.

A.1.2 Rasch model parameters

The best fitting model for extracting the estimates of the Rasch model parameters can be

selected from model comparison.

Model 1 results in overall respondent estimates and overall stimulus estimates. The over-

all respondent ability estimates can be extracted and stored in a data frame:

ability <- data.frame(

subject = rownames(coef(a1)$subject), # Respondent IDs

ability = coef(a1)$subject[, 1] # Select the first column

)

The overall stimulus easiness estimates can be extracted and stored as well:

easiness <- data.frame(

stimuli = rownames(coef(a1)$stimuli), # Stimuli labels

easiness = coef(a1)$stimuli[, 1] # Select the first column

)

Model 2 results in condition–specific stimulus estimates and overall respondent esti-

mates. The condition–specific stimulus estimates can be extracted as follows:
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easiness_cond <- coef(a2)$stimuli[, -1] # drop the first column

# (fixed intercept set at 0)

The overall ability estimates of the respondents can be extracted and stored in a data frame:

ability <- data.frame(

subject = rownames(coef(a2)$subject),

ability = coef(a2)$subject[, 1] # select only the random

) # intercept estimates

Model 3 results in condition–specific respondent estimates and overall stimulus esti-

mates. The condition–specific respondent ability estimates can be extracted as follows:

cond_ability <- coef(a3)$subject[, -1] # drop the first column

# (fixed intercept set at 0)

# rownames are the subject IDs

The overall stimulus easiness estimates can be extracted and stored in a data frame as

well:

easiness <- data.frame(

stimuli = rownames(coef(a3)$stimuli),

easiness = coef(a3)$stimuli[, 1] # select only the random

) # intercept estimates

A.2 Log-time models specification

The code for the estimation of the log-normal models is the same as the one used for the

estimation of the Rasch models. The changes concern the name of the specific function to use

(from glmer() to lmer()) and the dependent variable (from correct to log(latency)).

For this reason, only the code for the estimation of Model 3 and the code for extracting the

log-normal model estimates from this model are reported.

Model 3 can be estimated as follows:
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t3 <- lmer(log(seconds) ˜ 0 + condition + (1|stimuli) +

(0 + condition|subject),

data = data,

REML = FALSE) # Maximum Likelihood estimation

summary(t3) # summary of the results

For the comparison of the log-time models, the same code as the one used for the comparison

of the accuracy models can be used. The names of the models to pass to the anova()

function have to be changed accordingly, in this case from a to t.

A.2.1 Log-normal model parameters

We report the code for extracting the log-normal model parameters from log-time Model

3, assuming it was the best fitting model according to model comparison. The same code

used for extracting the parameters from the accuracy models can be used for extracting the

parameters of the log-normal models. The changes regard the name of the objects containing

the models, from a to t, and the names of the new objects created for the parameters (e.g.,

from easiness to intensity).

The condition–specific respondent estimates can be obtained as follows:

cond_speed <- coef(t3)$subject[, -1] # drop the first column

# (fixed intercept set at 0)

# rownames are the subject IDs

The overall stimulus time intensity estimates can be obtained as follows:

intensity <- data.frame(

stimuli = rownames(coef(t3)$stimuli),

intensity = coef(t3)$stimuli[, 1] # select only the random

) # intercept estimates



Appendix B

R code for a comprehensive modeling of implicit

measures.

This appendix presents the R code used for obtaining the Rasch and log-normal model

estimates from (Generalized) Linear Mixed-Effect models from IAT and SC-IAT data ac-

cording to the comprehensive modeling approach presented in Section 6.2

The example is based on the Coke-Pepsi IAT and the Coke SC-IAT presented in Chapter

1. For illustration purposes, a Pepsi SC-IAT is considered as well. The associative conditions

of the Pepsi SC-IAT are the Pepsi-Good/Bad one (PG condition) and the Pepsi-Bad/Good

one (PB condition).

The data set should contain the following variables:

• subject: Column containing the respondent IDs (can be numeric, a factor, or a

string, as long as it is unique for each respondent).

• measure: Column containing the labels that identify the three implicit measures (e.g.,

iat, cokesciat, pepsiciat). This variable should be a factor with three levels.

• condition: Column containing the labels of the six associative conditions of the

three implicit measures (e.g., CGPB and PGCB for the IAT, CG and CB for the Coke

SC-IAT, PG and PB for the Pepsi SC-IAT). This variable should be a factor with six

levels.

• stimuli: Column containing the labels identifying each stimulus (e.g., good, bad,

coke1, pepsi).
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• latency: Column containing the latency of the responses, expressed in seconds or

milliseconds. The raw response times (i.e., no inflation on the incorrect responses)

should be used.

• correct: Column containing the accuracy of the responses, where 0 is the incorrect

response and 1 is the correct response.

The data set must be in a long format. This means that the response of each respondent

on each stimulus in each associative condition of each implicit measure must be on a separate

row, and the total number of observations (rows) for each subject must correspond to the total

number of trials in the two associative conditions of each implicit measure. For instance, in

the IAT reported in Chapter 7, respondents were presented with 60 trials in each associative

condition. Each of the SC-IATs was composed of 72 trials in each associative condition. The

total number of observations (rows) for each respondent was 408 (i.e., 120 observations in

the IAT, 144 observations in the Dark SC-IAT and 144 observations in the Milk SC-IAT).

Regardless of the dependent variable (i.e., either accuracy or log-time responses), the first

model is the Null model in which the random intercepts of both the respondents and the

stimuli are specified across conditions and across implicit measures. The fixed slope is the

implicit measure. Since the fixed intercept is set at 0, the estimates for each level of the fixed

slope can be considered as the marginal log-odds (accuracy models) or the marginal expected

average log-time response (log-time) models.

In the second model, the multidimensionality of the implicit measure is allowed at the

respondent level while stimuli are centered at 0. The random slopes of the respondents in

the implicit measures (0 + measure|subject) and the random intercepts of the stimuli

across implicit measures (1|stimuli) are specified.

Finally, in the third model the multidimensionality of the associative condition of the spe-

cific implicit measure is allowed at the respondent level. The random slopes of the respon-

dents in the associative conditions of each measure (0 + condition|respondent) and

the random intercepts of the stimuli across implicit measures are specified (1|stimuli).

The fixed slope is the associative condition of each measure.
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The accuracy and log-time models are estimated with the lme4 package (Bates, Mächler,

et al., 2015).

B.1 Accuracy models specification

The code for the specification of the accuracy models is illustrated.

B.1.1 Model estimation

Model 1: The effect of the implicit measure is specified as the fixed effect. The between–

subjects variability is specified as the random intercepts of the respondents across associa-

tive conditions and implicit measures ((1|subject)). The between–stimuli variability is

specified as the random intercepts of the stimuli across associative conditions and implicit

measures ((1|stimuli)).

a1 <- glmer(correct ˜ 0 + measure + (1|stimuli) + (1|subject),

data = data, # IAT and SC-IAT data in long format

family = "binomial")

summary(a1) # summary of the results

Model 2: The effect of the implicit measure is specified as the fixed effect. The between–

stimuli variability is specified as the random intercepts of the stimuli across associative con-

ditions and implicit measures ((1|stimuli)). The within–subjects between–measures

variability is specified as the random slopes of the respondents in the implicit measures, but

across the associative conditions ((0 + measure|subject)):

a2 <- glmer(correct ˜ 0 + measure + (1|stimuli) +

(0 + measure|stimuli),

data = data,

family = "binomial")

summary(a2)
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Model 3: The between–stimuli variability is specified as the random intercepts of the stim-

uli across associative conditions and implicit measures ((1|stimuli)). The within–subjects

between–conditions variability is specified as the random slopes of the respondents in the

conditions of each implicit measure ((0 + condition|subject)). The fixed slope is

the associative condition of each implicit measure:

a3 <- glmer(correct ˜ 0 + condition + (1|stimuli) +

(0 + condition|subject),

data = data,

family = "binomial")

summary(a3)

Model comparison

Once the three models have been estimated, they can be compared with each other:

anova(a1, a2, a3)

B.1.2 Rasch model parameters

Grounding on the results of model comparison, the best fitting model can be selected for

extracting the estimates of the Rasch model parameters.

Model 1 results in overall respondent estimates and overall stimulus estimates. The over-

all respondent ability estimates can be extracted and stored in a data frame:

ability <- data.frame(

subject = rownames(coef(a1)$subject), # Respondent IDs

ability = coef(a1)$subject[, 1] # Select only the random

) # intercepts estimates

The overall stimulus easiness parameters can be extracted and stored as well:

easiness <- data.frame(

stimuli = rownames(coef(a1)$stimuli), # Stimuli labels



B.2. LOG-TIME MODELS SPECIFICATION 193

easiness = coef(a1)$stimuli[, -1] # Select only the random

) # intercepts estimates

Model 2 results in measure–specific respondent estimates and overall stimulus estimates.

The measure–specific respondent ability estimates can be extracted as follows:

ability_measure <- coef(a2)$subject[, -1] # drop the first column

# (fixed intercept set at 0)

The overall stimulus easiness parameters can be extracted and stored in a data frame:

easiness <- data.frame(

stimuli = rownames(coef(a2)$stimuli),

easiness = coef(a2)$subject[, 1] # select only the random

) # intercept estimates

Model 3 results in condition–specific respondent ability estimates and overall stimulus

easiness estimates. The condition–specific respondent ability estimates can be extracted as

follows:

cond_ability <- coef(a3)$subject[, -1] # drop the first column

# (fixed intercepts set at 0)

The overall stimulus easiness estimates can be extracted and stored in a data frame as well:

easiness <- data.frame(

stimuli = rownames(coef(a3)$stimuli),

easiness = coef(a3)$stimuli[, 1] # select only the random

) # intercept estimates

B.2 Log-time models specification

The code for the estimation of the log-time models is the same as the one used for the

estimation of the accuracy models. The changes concern the name of the specific func-

tion to use (from glmer() to lmer()) and the dependent variable (from correct to
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log(latency)). Consistently, the code for extracting the log-normal model estimates

from the log-time models is the same as that used for extracting the Rasch model estimates

from the accuracy models. For these reasons, only the code for the estimation of Model 3

and the related code for extracting the log-normal model estimates are reported.

Model 3 can be estimated as follows:

t3 <- lmer(log(seconds) ˜ 0 + condition + (1|stimuli) +

(0 + condition|subject),

data = data,

REML = FALSE) # Maximum Likelihood estimation

summary(t3) # summary of the results

For the comparison between log-time models, the same code as the one used for accuracy

models comparison can be employed. The names of the objects containing the models to

pass to the function anova() have to be changed accordingly, in this case from a to t.

B.2.1 Log-normal model parameters

The code for extracting the log-normal model parameters from log-time Model 3 is reported.

The same code used for extracting the parameters from the accuracy models can be em-

ployed for extracting the parameters of the log-normal models from the log-time models. The

changes regard the name of the objects containing the models, from a to t, and the names of

the new objects created for the parameters (e.g., from easiness to intensity).

The condition–specific respondent speed estimates can be obtained as follows:

cond_speed <- coef(t3)$subject[, -1] # drop the first column

# (fixed interceptse set at 0)

The overall stimulus time intensity estimates can be obtained as follows:

intensity <- data.frame(

stimuli = rownames(coef(t3)$stimuli),

intensity = coef(t3)$stimuli[, 1] # select only the random

) # intercept estimates
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