L'importanza di essere significante: Un esempio basato sul test della Torre di Londra

Ottavia M. Epifania, Luca Stefanutti, Pasquale Anselmi, Andrea Brancaccio, Debora de Chiusole

Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata, Università di Padova

> La psicometria tra oggi e domani: Sfide e nuovi orizzonti

> > $20~{\rm Giugno}~2024$

《日》 《圖》 《臣》 《臣》

1

200

$ Meaningfulness \\ \bullet \circ $	The case in point	Real data application	Food for thoughts
	000	000000	000

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable ¹.

Meaningfulness

¹Strictly referring to extensive physical measures

$ Meaningfulness \\ \bullet \circ $	The case in point 000	Real data application	Food for thoughts 000

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable ¹.

Meaningful comparisons

The comparison between a and b is meaningful if it is invariant under all the unit transformations.

Meaningfulness

Sar

イロト イポト イモト イモト

¹Strictly referring to extensive physical measures

Meaningfulness	The case in point 000	Real data application	Food for thoughts

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable ¹.

Meaningful comparisons

The comparison between a and b is meaningful if it is invariant under all the unit transformations.

Meaningful comparisons 2.0

Given that there is a difference between a and b, is this difference significant (or not) regardless of the scales of measurement?

¹Strictly referring to extensive physical measures

Meaningfulness

20 Giugno 2024

Sar

化口下 化塑料 化蒸发 化蒸发

Meaningfulness	
00	

Real data application 000000

Food for thoughts 000

Admissible and non-admissible transformations

$$\varphi(P) = [0, 1, 2, 3]$$
 $\varphi'(P) = [0, 2, 4, 10]$ $\varepsilon(P) = [0, 2, 2, 3]$

<ロト < 目 ト < 目 ト < 目 ト < 目 ・ つ < ()</p>

Meaningfulness

 $\underset{\bigcirc \bullet}{\operatorname{Meaningfulness}}$

The case in point 000

Real data application 000000

Food for thoughts 000

Admissible and non-admissible transformations

$$\varphi(P) = [0, 1, 2, 3]$$
 $\varphi'(P) = [0, 2, 4, 10]$ $\varepsilon(P) = [0, 2, 2, 3]$

	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
				φ	,				
Joe	0	1	2	2	2	3	3	3	3
Jane	0	2	2	2	3	3	3	3	3
Max	0	1	0	2	3	3	3	3	3
φ'									
Joe	0	2	4	4	4	10	10	10	10
Jane	0	4	4	4	10	10	10	10	10
Max	0	2	0	4	10	10	10	10	10
				ϵ					
Joe	0	2	2	2	2	3	3	3	3
Jane	0	2	2	2	3	3	3	3	3
Max	0	2	0	2	3	3	3	3	3

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ◆ ○ ◆

Meaningfulness

Meaningfulness	
0	

Real data application $_{\rm OOOOOO}$

Food for thoughts 000

Admissible and non-admissible transformations

$$\varphi(P) = [0, 1, 2, 3]$$
 $\varphi'(P) = [0, 2, 4, 10]$ $\varepsilon(P) = [0, 2, 2, 3]$

	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
				φ	,				
Joe	0	1	2	2	2	3	3	3	3
Jane	0	2	2	2	3	3	3	3	3
Max	0	1	0	2	3	3	3	3	3
	φ'								
Joe	0	2	4	4	4	10	10	10	10
Jane	0	4	4	4	10	10	10	10	10
Max	0	2	0	4	10	10	10	10	10
				ϵ					
Joe	0	2	2	2	2	3	3	3	3
Jane	0	2	2	2	3	3	3	3	3
Max	0	2	0	2	3	3	3	3	3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Meaningfulness

The case in point $\bullet \circ \circ$

Real data application 000000

Food for thoughts 000

The Tower of London Test (ToL Test)

Starting configuration

Goal configuration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Meaningfulness

The case in point 000

Real data application

Food for thoughts

The Tower of London Test (ToL Test)

Starting configuration

Goal configuration

Problem	Minimum moves	Alternative paths
Example	2	1
1	2	1
2	2	1
3	3	2
4	3	1
5	4	2
6	4	1
7	4	1
8	4	1
9	5	2
10	5	1
11	5	1
12	5	2

Sac

Meaningfulness oo	The case in point $\circ \bullet \circ$	Real data application	Food for thoughts 000
Attempt-based SMs			

Scoring system	First attempt	Second attempt	Third attempt	Fourth on	Total sum score
KR	3	2	1	0	0 - 36
SH1	1	0			0-12

Meaningfulness oo	The case in point $\circ \bullet \circ$	Real data application 000000	Food for thoughts 000
Attempt-based SMs			

Scoring system	First attempt	Second attempt	Third attempt	Fourth on	Total sum score
\mathbf{KR}	3	2	1	0	0 - 36
SH1	1	0			0-12

Scoring system	First attempt	Second attempt	Third attempt	Fourth on	Total sum score
P1	3	2		0	0-36
P1′	3	1		0	0 - 36

Meaningfulness oo	The case in point $\circ \bullet \circ$	Real data application 000000	Food for thoughts 000
Attempt-based SMs			

Scoring system	First attempt	Second attempt	Third attempt	Fourth on	Total sum score
\mathbf{KR}	3	2	1	0	0 - 36
SH1	1	0		0-12	

Scoring system	First attempt	Second attempt	Third attempt	Fourth on	Total sum score
P1	3	2		0	0-36
P1'	3	1		0	0 - 36

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Meaningfulness

Mea	ning	gful	lness
00			

Real data application $_{\odot \odot \odot \odot \odot \odot}$

Food for thoughts 000

Methods: Individual differences

Monotonic relation

Meaningfulness

The case in point 000

Real data application $_{\odot \odot \odot \odot \odot \odot}$

Food for thoughts 000

Methods: Individual differences

Monotonic relation

Distances and inversions

・ロト・日本・ 小田・ 小田・ うへぐ

Meaningfulness

The case in point 000

Real data application $_{\odot \odot \odot \odot \odot \odot}$

Food for thoughts 000

Methods: Individual differences

Monotonic relation

Distances and inversions

Meaningfulness

The case in point 000

Real data application $_{\odot \odot \odot \odot \odot \odot}$

Food for thoughts 000

Methods: Individual differences

Monotonic relation

Distances and inversions

Meaningfulness

Meaningfulness oo	The case in point	Real da 00000	ta application
Results: Monotonic relation			
	Attom	nt based SM	C
	Attem	pt-based SM	5
2		2	
	39 B		
= .	1 1 1 2 1 2		

20 Giugno 2024

500

Food for thoughts

Meaningfulness oo	The case in point 000	Real data application $\circ\circ\circ\bullet\circ\circ$	Food for thoughts
Methods: Group differences			

$$H_0: \ \mu_{g1} - \mu_{g2} = 0$$
$$H_1: \ \mu_{g1} - \mu_{g2} \neq 0$$

t-test on the standardized scores considering different grouping variables:

Grouping variable	n_1	n_2
Gender	199	196
Administration order	202	193
Administration modality	211	184
Schooling years	171	224

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Meaningfulness

Meaningfulness 00	The case in point 000	Real data application $\circ \circ \circ \circ \bullet \circ$
Results: Attempt-based SM		

Food	for	thoughts
000		~

Results: Attempt-based SM

	\mathbf{KR}	$\mathbf{SH1}$	$\mathbf{P1}$	P1'
	d	d	d	d
Gender	1.84	2.11^{*}	1.69	2.03^{*}
	0.19	0.21	0.17	0.20
Test order	-0.15	0.80	-0.48	0.28
	-0.01	0.08	-0.05	0.03
Adm. Modality	-2.85^{**}	-1.93	-2.69^{**}	-2.35^{*}
	-0.29	-0.19	-0.27	-0.24
Schooling	3.95^{***}	3.56^{***}	3.82^{***}	3.85^{***}
	0.39	0.36	0.38	0.39

Meaningfulness 00	The case in point 000	Real data application $\circ \circ \circ \circ \circ \bullet \circ$	Food for thoughts 000
Results: Attempt-based SM			

	KR	SH1	P1	P1'
	d	d	d	d
Gender	1.84	2.11^{*}	1.69	2.03^{*}
	0.19	0.21	0.17	0.20
Test order	-0.15	0.80	-0.48	0.28
	-0.01	0.08	-0.05	0.03
Adm. Modality	-2.85^{**}	-1.93	-2.69^{**}	-2.35^{*}
	-0.29	-0.19	-0.27	-0.24
Schooling	3.95^{***}	3.56^{***}	3.82^{***}	3.85^{***}
	0.39	0.36	0.38	0.39

Meaningfulness

Meaningfulness 00	The case in point 000	Real data application 00000
Results: Attempt-based SM		

Food for thoughts 000

Results: Attempt-based SM

	KR	SH1	P1	P1'
	d	d	d	d
Gender	1.84	2.11^{*}	1.69	2.03^{*}
	0.19	0.21	0.17	0.20
Test order	-0.15	0.80	-0.48	0.28
	-0.01	0.08	-0.05	0.03
Adm. Modality	-2.85^{**}	-1.93	-2.69^{**}	-2.35^{*}
	-0.29	-0.19	-0.27	-0.24
Schooling	3.95^{***}	3.56^{***}	3.82^{***}	3.85^{***}
	0.39	0.36	0.38	0.39

<□>
<□>
<□>
<□>
<□>
<□> 590

Meaningfulness

Meaningfulness 00	The case in point 000	Real data application $\circ \circ \circ \circ \circ \bullet \circ$
D 1	CM	

Food for thoughts 000

Results: Attempt-based SM

	KR	SH1	P1	P1'
	d	d	d	d
Gender	1.84	2.11^{*}	1.69	2.03^{*}
	0.19	0.21	0.17	0.20
Test order	-0.15	0.80	-0.48	0.28
	-0.01	0.08	-0.05	0.03
Adm. Modality	-2.85^{**}	-1.93	-2.69^{**}	-2.35^{*}
	-0.29	-0.19	-0.27	-0.24
Schooling	3.95^{***}	3.56^{***}	3.82^{***}	3.85^{***}
	0.39	0.36	0.38	0.39

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ ● ◆ ● ◆ ● ◆

Meaningfulness

Meaningfulness 00	The case in point 000	Real data application $\circ \circ \circ \circ \circ \bullet \circ$	Food for thoughts
Results: Attempt-based SM			

	KR	SH1	P1	P1'
	d	d	d	d
Gender	1.84	2.11^{*}	1.69	2.03^{*}
	0.19	0.21	0.17	0.20
Test order	-0.15	0.80	-0.48	0.28
	-0.01	0.08	-0.05	0.03
Adm. Modality	-2.85^{**}	-1.93	-2.69^{**}	-2.35^{*}
	-0.29	-0.19	-0.27	-0.24
Schooling	3.95^{***}	3.56^{***}	3.82^{***}	3.85^{***}
	0.39	0.36	0.38	0.39

Meaningfulness

Meaningfulness oo	The case in point 000	Real data application $\circ \circ \circ \circ \circ \circ \circ$	Food for 000
Results: Attempt-bas	ed SM		

	KR	SH1	P1	P1'
	d	d	d	d
Gender	1.84	2.11^{*}	1.69	2.03^{*}
	0.19	0.21	0.17	0.20
Test order	-0.15	0.80	-0.48	0.28
	-0.01	0.08	-0.05	0.03
Adm. Modality	-2.85^{**}	-1.93	-2.69^{**}	-2.35^{*}
	-0.29	-0.19	-0.27	-0.24
Schooling	3.95^{***}	3.56^{***}	3.82^{***}	3.85^{***}
	0.39	0.36	0.38	0.39

Meaningfulness

20 Giugno 2024

thoughts

Mean	ingfulness	
00		

 $\begin{array}{c} {\rm Real \ data \ application} \\ \circ \circ \circ \circ \circ \bullet \end{array}$

Food for thoughts 000

Results: Latency-based SM

	SH2	AN	Т
	d	d	d
Gender	1.64	1.88	2.10^{*}
	0.17	0.19	0.21
Test order	0.37	0.99	0.95
	0.04	0.10	0.10
Adm. Order	-2.90^{**}	-2.33^{*}	-2.84^{**}
	-0.29	-0.23	-0.29
Schooling	5.52^{***}	5.32^{***}	5.13^{***}
	0.56	0.54	0.52

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < で</p>

Meaningfulness

Mea	nin	gfu	lness
00			

 $\underset{\texttt{OOOOO}}{\texttt{Real data application}}$

Food for thoughts 000

Results: Latency-based SM

	SH2	AN	Т
	d	d	d
Gender	1.64	1.88	2.10^{*}
	0.17	0.19	0.21
Test order	0.37	0.99	0.95
	0.04	0.10	0.10
Adm. Order	-2.90^{**}	-2.33^{*}	-2.84^{**}
	-0.29	-0.23	-0.29
Schooling	5.52^{***}	5.32^{***}	5.13^{***}
	0.56	0.54	0.52

<ロト < 目 ト < 目 ト < 目 ト < 目 ・ つ < ()</p>

Meaningfulness

Mea	nin	gfu	lness
00			

 $\begin{array}{c} {\rm Real \ data \ application} \\ \circ \circ \circ \circ \circ \bullet \end{array}$

Food for thoughts 000

Results: Latency-based SM

	SH2	AN	Т
	d	d	d
Gender	1.64	1.88	2.10^{*}
	0.17	0.19	0.21
Test order	0.37	0.99	0.95
	0.04	0.10	0.10
Adm. Order	-2.90^{**}	-2.33^{*}	-2.84^{**}
	-0.29	-0.23	-0.29
Schooling	5.52^{***}	5.32^{***}	5.13^{***}
	0.56	0.54	0.52

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < で</p>

Meaningfulness

The case in point 000

Real data application 000000

Food for thoughts $_{\odot OO}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Meaningfulness

The case in point 000

Real data application $_{\rm OOOOOO}$

Food for thoughts $0 \oplus 0$

Are we sure sum scores are a good idea...?

PSYCHOMETRIKA—VOL. 89, NO. 1, 84–117 MARCH 2024 https://doi.org/10.1007/s11336-024-09964-7

RECOGNIZE THE VALUE OF THE SUM SCORE, PSYCHOMETRICS' GREATEST ACCOMPLISHMENT

KLAAS SIJTSMA

TILBURG UNIVERSITY

JULES L. ELLIS

???

OPEN UNIVERSITY OF THE NETHERLANDS

DENNY BORSBOOM

UNIVERSITY OF AMSTERDAM

??

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < ()</p>

The case in point 000

Real data application 000000

Food for thoughts $0 \oplus 0$

Are we sure sum scores are a good idea...?

PSYCHOMETRIKA—VOL. 89, NO. 1, 84–117 MARCH 2024 https://doi.org/10.1007/s11336-024-09964-7

n.

RECOGNIZE THE VALUE OF THE SUM SCORE, PSYCHOMETRICS' GREATEST ACCOMPLISHMENT

KLAAS SIJTSMA

TILBURG UNIVERSITY

JULES L. ELLIS

???

OPEN UNIVERSITY OF THE NETHERLANDS

DENNY BORSBOOM

UNIVERSITY OF AMSTERDAM

??

Sum scores of ordinal data bring to a multiverse of contrasting results

Meaningfulness

Sum scores of ordinal data bring to a multiverse of contrasting results Increasing the number of items does not solve the issue.... it worsens it! Meaningfulness of psychological measures and reproducibility are interlaced

Research founded by the project "Computerized, Adaptive and Personalized Assessment of Executive Functions and Fluid Intelligence" (PRIN 2020, Prot. 20209WKCLL, P.I. Prof. Luca Stefanutti)

Meaningfulness

20 Giugno 2024

Sar

Sum scores of ordinal data bring to a multiverse of contrasting results Increasing the number of items does not solve the issue.... it worsens it! Meaningfulness of psychological measures and reproducibility are interlaced

Bright side:

Sum scores of truly dichotomous data (i.e., true vs. false, correct vs. incorrect) are meaningful

Research founded by the project "Computerized, Adaptive and Personalized Assessment of Executive Functions and Fluid Intelligence" (PRIN 2020, Prot. 20209WKCLL, P.I. Prof. Luca Stefanutti)